Behavior tree (artificial intelligence, robotics and control)

A behavior tree is a mathematical model of plan execution used in computer science, robotics, control systems and video games. They describe switchings between a finite set of tasks in a modular fashion. Their strength comes from their ability to create very complex tasks composed of simple tasks, without worrying how the simple tasks are implemented. Behavior trees present some similarities to hierarchical state machines with the key difference that the main building block of a behavior is a task rather than a state. Its ease of human understanding make behavior trees less error prone and very popular in the game developer community. Behavior trees have been shown to generalize several other control architectures.[1][2]

Behavior tree modelling the search and grasp plan of a two-armed robot
  1. ^ Colledanchise, Michele; Ögren, Petter (2017). "How Behavior Trees Modularize Hybrid Control Systems and Generalize Sequential Behavior Compositions, the Subsumption Architecture, and Decision Trees". IEEE Transactions on Robotics. 33 (2): 372–389. doi:10.1109/TRO.2016.2633567. S2CID 9518238.
  2. ^ Colledanchise, Michele; Ögren, Petter (2018). Behavior Trees in Robotics and AI: An Introduction. CRC Press. arXiv:1709.00084. doi:10.1201/9780429489105. ISBN 978-1-138-59373-2. S2CID 27470659.