Behavioral modeling

The behavioral approach to systems theory and control theory was initiated in the late-1970s by J. C. Willems as a result of resolving inconsistencies present in classical approaches based on state-space, transfer function, and convolution representations. This approach is also motivated by the aim of obtaining a general framework for system analysis and control that respects the underlying physics.

The main object in the behavioral setting is the behavior – the set of all signals compatible with the system. An important feature of the behavioral approach is that it does not distinguish a priority between input and output variables. Apart from putting system theory and control on a rigorous basis, the behavioral approach unified the existing approaches and brought new results on controllability for nD systems, control via interconnection,[1] and system identification.[2]

  1. ^ J.C. Willems On interconnections, control, and feedback IEEE Transactions on Automatic Control Volume 42, pages 326-339, 1997 Available online http://homes.esat.kuleuven.be/~jwillems/Articles/JournalArticles/1997.4.pdf
  2. ^ I. Markovsky, J. C. Willems, B. De Moor, and S. Van Huffel. Exact and approximate modeling of linear systems: A behavioral approach. Monograph 13 in “Mathematical Modeling and Computation”, SIAM, 2006. Available online http://homepages.vub.ac.be/~imarkovs/siam-book.pdf Archived 2022-07-06 at the Wayback Machine