Beryllium

Beryllium, 4Be
Beryllium
Pronunciation/bəˈrɪliəm/ (bə-RIL-ee-əm)
Appearancewhite-gray metallic
Standard atomic weight Ar°(Be)
Beryllium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Be

Mg
lithiumberylliumboron
Atomic number (Z)4
Groupgroup 2 (alkaline earth metals)
Periodperiod 2
Block  s-block
Electron configuration[He] 2s2
Electrons per shell2, 2
Physical properties
Phase at STPsolid
Melting point1560 K ​(1287 °C, ​2349 °F)
Boiling point2742 K ​(2469 °C, ​4476 °F)
Density (at 20 °C)1.845 g/cm3[3]
when liquid (at m.p.)1.690 g/cm3
Critical point5205 K,  MPa (extrapolated)
Heat of fusion12.2 kJ/mol
Heat of vaporization292 kJ/mol
Molar heat capacity16.443 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1462 1608 1791 2023 2327 2742
Atomic properties
Oxidation statescommon: +2
0,[4] +1[5]
ElectronegativityPauling scale: 1.57
Ionization energies
  • 1st: 899.5 kJ/mol
  • 2nd: 1757.1 kJ/mol
  • 3rd: 14,848.7 kJ/mol
  • (more)
Atomic radiusempirical: 112 pm
Covalent radius96±3 pm
Van der Waals radius153 pm
Color lines in a spectral range
Spectral lines of beryllium
Other properties
Natural occurrenceprimordial
Crystal structurehexagonal close-packed (hcp) (hP2)
Lattice constants
Hexagonal close packed crystal structure for beryllium
a = 228.60 pm
c = 358.42 pm (at 20 °C)[3]
Thermal expansion10.98×10−6/K (at 20 °C)[3][a]
Thermal conductivity200 W/(m⋅K)
Electrical resistivity36 nΩ⋅m (at 20 °C)
Magnetic orderingdiamagnetic
Molar magnetic susceptibility−9.0×10−6 cm3/mol[6]
Young's modulus287 GPa
Shear modulus132 GPa
Bulk modulus130 GPa
Speed of sound thin rod12,890 m/s (at r.t.)[7]
Poisson ratio0.032
Mohs hardness6.0
Vickers hardness1670 MPa
Brinell hardness590–1320 MPa
CAS Number7440-41-7
History
DiscoveryLouis Nicolas Vauquelin (1798)
First isolationFriedrich Wöhler & Antoine Bussy (1828)
Isotopes of beryllium
Main isotopes[8] Decay
abun­dance half-life (t1/2) mode pro­duct
7Be trace 53.22 d ε 7Li
8Be synth 81.9 as α 4He
9Be 100% stable
10Be trace 1.387×106 y β 10B
 Category: Beryllium
| references

Beryllium is a chemical element; it has symbol Be and atomic number 4. It is a steel-gray, hard, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form minerals. Gemstones high in beryllium include beryl (aquamarine, emerald, red beryl) and chrysoberyl. It is a relatively rare element in the universe, usually occurring as a product of the spallation of larger atomic nuclei that have collided with cosmic rays. Within the cores of stars, beryllium is depleted as it is fused into heavier elements. Beryllium constitutes about 0.0004 percent by mass of Earth's crust. The world's annual beryllium production of 220 tons is usually manufactured by extraction from the mineral beryl, a difficult process because beryllium bonds strongly to oxygen.

In structural applications, the combination of high flexural rigidity, thermal stability, thermal conductivity and low density (1.85 times that of water) make beryllium a desirable aerospace material for aircraft components, missiles, spacecraft, and satellites.[9] Because of its low density and atomic mass, beryllium is relatively transparent to X-rays and other forms of ionizing radiation; therefore, it is the most common window material for X-ray equipment and components of particle detectors.[9] When added as an alloying element to aluminium, copper (notably the alloy beryllium copper), iron, or nickel, beryllium improves many physical properties.[9] For example, tools and components made of beryllium copper alloys are strong and hard and do not create sparks when they strike a steel surface. In air, the surface of beryllium oxidizes readily at room temperature to form a passivation layer 1–10 nm thick that protects it from further oxidation and corrosion.[10] The metal oxidizes in bulk (beyond the passivation layer) when heated above 500 °C (932 °F),[11] and burns brilliantly when heated to about 2,500 °C (4,530 °F).[12]

The commercial use of beryllium requires the use of appropriate dust control equipment and industrial controls at all times because of the toxicity of inhaled beryllium-containing dusts that can cause a chronic life-threatening allergic disease, berylliosis, in some people.[13] Berylliosis is typically manifested by chronic pulmonary fibrosis and, in severe cases, right sided heart failure and death.[14]

  1. ^ "Standard Atomic Weights: Beryllium". CIAAW. 2013.
  2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (4 May 2022). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. ^ a b c Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
  4. ^ Be(0) has been observed; see "Beryllium(0) Complex Found". Chemistry Europe. 13 June 2016.
  5. ^ "Beryllium: Beryllium(I) Hydride compound data" (PDF). bernath.uwaterloo.ca. Retrieved 10 December 2007.
  6. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  7. ^ Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 14.48. ISBN 1-4398-5511-0.
  8. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  9. ^ a b c Cite error: The named reference deGruyter was invoked but never defined (see the help page).
  10. ^ Hoover, Mark D.; Castorina, Bryan T.; Finch, Gregory L.; Rothenberg, Simon J. (October 1989). "Determination of the Oxide Layer Thickness on Beryllium Metal Particles". American Industrial Hygiene Association Journal. 50 (10): 550–553. doi:10.1080/15298668991375146. ISSN 0002-8894. PMID 2801503.
  11. ^ Cite error: The named reference Tomastik2005 was invoked but never defined (see the help page).
  12. ^ Maček, Andrej; McKenzie Semple, J. (1969). "Experimental burning rates and combustion mechanisms of single beryllium particles". Symposium (International) on Combustion. 12 (1): 71–81. doi:10.1016/S0082-0784(69)80393-0.
  13. ^ Puchta, Ralph (2011). "A brighter beryllium". Nature Chemistry. 3 (5): 416. Bibcode:2011NatCh...3..416P. doi:10.1038/nchem.1033. PMID 21505503.
  14. ^ Chong, S; Lee, KS; Chung, MJ; Han, J; Kwon, OJ; Kim, TS (January 2006). "Pneumoconiosis: comparison of imaging and pathologic findings". Radiographics. 26 (1): 59–77. doi:10.1148/rg.261055070. PMID 16418244.


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).