Besicovitch covering theorem

In mathematical analysis, a Besicovitch cover, named after Abram Samoilovitch Besicovitch, is an open cover of a subset E of the Euclidean space RN by balls such that each point of E is the center of some ball in the cover.

The Besicovitch covering theorem asserts that there exists a constant cN depending only on the dimension N with the following property:

  • Given any Besicovitch cover F of a bounded set E, there are cN subcollections of balls A1 = {Bn1}, …, AcN = {BncN} contained in F such that each collection Ai consists of disjoint balls, and

Let G denote the subcollection of F consisting of all balls from the cN disjoint families A1,...,AcN. The less precise following statement is clearly true: every point x ∈ RN belongs to at most cN different balls from the subcollection G, and G remains a cover for E (every point y ∈ E belongs to at least one ball from the subcollection G). This property gives actually an equivalent form for the theorem (except for the value of the constant).

  • There exists a constant bN depending only on the dimension N with the following property: Given any Besicovitch cover F of a bounded set E, there is a subcollection G of F such that G is a cover of the set E and every point x ∈ E belongs to at most bN different balls from the subcover G.

In other words, the function SG equal to the sum of the indicator functions of the balls in G is larger than 1E and bounded on RN by the constant bN,