Theorem on orthonormal sequences
In mathematics, especially functional analysis, Bessel's inequality is a statement about the coefficients of an element in a Hilbert space with respect to an orthonormal sequence. The inequality was derived by F.W. Bessel in 1828.[1]
Let be a Hilbert space, and suppose that is an orthonormal sequence in . Then, for any in one has
where ⟨·,·⟩ denotes the inner product in the Hilbert space .[2][3][4] If we define the infinite sum
consisting of "infinite sum" of vector resolute in direction , Bessel's inequality tells us that this series converges. One can think of it that there exists that can be described in terms of potential basis .
For a complete orthonormal sequence (that is, for an orthonormal sequence that is a basis), we have Parseval's identity, which replaces the inequality with an equality (and consequently with ).
Bessel's inequality follows from the identity
which holds for any natural n.