Betaxolol

Betaxolol
Clinical data
Trade namesKerlone
AHFS/Drugs.comMonograph
MedlinePlusa609023
Pregnancy
category
  • AU: C
Routes of
administration
By mouth, ocular
ATC code
Legal status
Legal status
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Bioavailability89%
MetabolismLiver
Elimination half-life14–22 hours
ExcretionKidney (20%)
Identifiers
  • (RS)-1-{4-[2-(cyclopropylmethoxy)ethyl]-
    phenoxy}-3-(isopropylamino)propan-2-ol
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.113.058 Edit this at Wikidata
Chemical and physical data
FormulaC18H29NO3
Molar mass307.434 g·mol−1
3D model (JSmol)
ChiralityRacemic mixture
  • O(CCc1ccc(OCC(O)CNC(C)C)cc1)CC2CC2
  • InChI=1S/C18H29NO3/c1-14(2)19-11-17(20)13-22-18-7-5-15(6-8-18)9-10-21-12-16-3-4-16/h5-8,14,16-17,19-20H,3-4,9-13H2,1-2H3 checkY
  • Key:NWIUTZDMDHAVTP-UHFFFAOYSA-N checkY
  (verify)

Betaxolol is a selective beta1 receptor blocker used in the treatment of hypertension and angina.[1] It is also a adrenergic blocker with no partial agonist action and minimal membrane stabilizing activity.[2] Being selective for beta1 receptors, it typically has fewer systemic side effects than non-selective beta-blockers, for example, not causing bronchospasm (mediated by beta2 receptors) as timolol may. Betaxolol also shows greater affinity for beta1 receptors than metoprolol. In addition to its effect on the heart, betaxolol reduces the pressure within the eye (intraocular pressure). This effect is thought to be caused by reducing the production of the liquid (which is called the aqueous humor) within the eye. The precise mechanism of this effect is not known. The reduction in intraocular pressure reduces the risk of damage to the optic nerve and loss of vision in patients with elevated intraocular pressure due to glaucoma.

It was patented in 1975 and approved for medical use in 1983.[3]

  1. ^ Buckley MM, Goa KL, Clissold SP (July 1990). "Ocular betaxolol. A review of its pharmacological properties, and therapeutic efficacy in glaucoma and ocular hypertension". Drugs. 40 (1): 75–90. doi:10.2165/00003495-199040010-00005. PMID 2202584. S2CID 46962082.
  2. ^ "Google Scholar". scholar.google.com. Retrieved 2023-12-26.
  3. ^ Fischer J, Ganellin CR (2006). Analogue-based Drug Discovery. John Wiley & Sons. p. 461. ISBN 9783527607495.