Binary relation

Transitive binary relations
Symmetric Antisymmetric Connected Well-founded Has joins Has meets Reflexive Irreflexive Asymmetric
Total, Semiconnex Anti-
reflexive
Equivalence relation Green tickY Green tickY
Preorder (Quasiorder) Green tickY
Partial order Green tickY Green tickY
Total preorder Green tickY Green tickY
Total order Green tickY Green tickY Green tickY
Prewellordering Green tickY Green tickY Green tickY
Well-quasi-ordering Green tickY Green tickY
Well-ordering Green tickY Green tickY Green tickY Green tickY
Lattice Green tickY Green tickY Green tickY Green tickY
Join-semilattice Green tickY Green tickY Green tickY
Meet-semilattice Green tickY Green tickY Green tickY
Strict partial order Green tickY Green tickY Green tickY
Strict weak order Green tickY Green tickY Green tickY
Strict total order Green tickY Green tickY Green tickY Green tickY
Symmetric Antisymmetric Connected Well-founded Has joins Has meets Reflexive Irreflexive Asymmetric
Definitions, for all and
Green tickY indicates that the column's property is always true for the row's term (at the very left), while indicates that the property is not guaranteed in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by Green tickY in the "Symmetric" column and in the "Antisymmetric" column, respectively.

All definitions tacitly require the homogeneous relation be transitive: for all if and then
A term's definition may require additional properties that are not listed in this table.

In mathematics, a binary relation associates elements of one set called the domain with elements of another set called the codomain.[1] Precisely, a binary relation over sets and is a set of ordered pairs where is in and is in .[2] It encodes the common concept of relation: an element is related to an element , if and only if the pair belongs to the set of ordered pairs that defines the binary relation.

An example of a binary relation is the "divides" relation over the set of prime numbers and the set of integers , in which each prime is related to each integer that is a multiple of , but not to an integer that is not a multiple of . In this relation, for instance, the prime number is related to numbers such as , , , , but not to or , just as the prime number is related to , , and , but not to or .

Binary relations, and especially homogeneous relations, are used in many branches of mathematics to model a wide variety of concepts. These include, among others:

A function may be defined as a binary relation that meets additional constraints.[3] Binary relations are also heavily used in computer science.

A binary relation over sets and is an element of the power set of Since the latter set is ordered by inclusion (), each relation has a place in the lattice of subsets of A binary relation is called a homogeneous relation when . A binary relation is also called a heterogeneous relation when it is not necessary that .

Since relations are sets, they can be manipulated using set operations, including union, intersection, and complementation, and satisfying the laws of an algebra of sets. Beyond that, operations like the converse of a relation and the composition of relations are available, satisfying the laws of a calculus of relations, for which there are textbooks by Ernst Schröder,[4] Clarence Lewis,[5] and Gunther Schmidt.[6] A deeper analysis of relations involves decomposing them into subsets called concepts, and placing them in a complete lattice.

In some systems of axiomatic set theory, relations are extended to classes, which are generalizations of sets. This extension is needed for, among other things, modeling the concepts of "is an element of" or "is a subset of" in set theory, without running into logical inconsistencies such as Russell's paradox.

A binary relation is the most studied special case of an -ary relation over sets , which is a subset of the Cartesian product [2]

  1. ^ Meyer, Albert (17 November 2021). "MIT 6.042J Math for Computer Science, Lecture 3T, Slide 2" (PDF). Archived (PDF) from the original on 2021-11-17.
  2. ^ a b Codd, Edgar Frank (June 1970). "A Relational Model of Data for Large Shared Data Banks" (PDF). Communications of the ACM. 13 (6): 377–387. doi:10.1145/362384.362685. S2CID 207549016. Archived (PDF) from the original on 2004-09-08. Retrieved 2020-04-29.
  3. ^ "Relation definition – Math Insight". mathinsight.org. Retrieved 2019-12-11.
  4. ^ Ernst Schröder (1895) Algebra und Logic der Relative, via Internet Archive
  5. ^ C. I. Lewis (1918) A Survey of Symbolic Logic, pages 269–279, via internet Archive
  6. ^ Gunther Schmidt, 2010. Relational Mathematics. Cambridge University Press, ISBN 978-0-521-76268-7, Chapt. 5