Bismuth oxynitrate is the name applied to a number of compounds that contain Bi3+, nitrate ions and oxide ions and which can be considered as compounds formed from Bi2O3, N2O5 and H2O. Other names for bismuth oxynitrate include bismuth subnitrate and bismuthyl nitrate. In older texts bismuth oxynitrate is often simply described as BiONO3 or basic bismuth nitrate. Bismuth oxynitrate was once called magisterium bismuti or bismutum subnitricum, and was used as a white pigment, in beauty care, and as a gentle disinfectant for internal and external use.[3][4] It is also used to form Dragendorff's reagent, which is used as a TLC stain.
Bismuth oxynitrate is commercially available as Bi5O(OH)9(NO3)4 (CAS number: 1304-85-4 ) or as BiONO3·H2O (CAS Number: 13595-83-0 ).
Some compounds have been fully characterised with single crystal studies and found to contain the octahedral [Bi6Ox(OH)8−x](10−x)+ cation. There is indirect evidence that either the octahedral cation Bi 6O 4(OH)6+ 4[4] or the octahedral cation Bi 6(OH)6+ 12[5] is present in aqueous solution following the polymerisation of Bi(H 2O)3+ 8, the Bi3+ ion present in acidic solutions.[6] The ion Bi 6O 4(OH)6+ 4 is found in the perchlorate compound Bi6O4(OH)4ClO4·7H2O[7] and is isoelectronic with the octahedral Sn6O4(OH)4 cluster found in the hydrate of tin(II) oxide, 3SnO·H2O.[5] The compounds that contain this are:
Bi6O4(HO)4(NO3)6·H2O[8][9] (equivalent to BiONO3·1/2H2O; Bi2O3·N2O5·H2O )
Bi6O4(OH)4(NO3)6·4H2O[10] (equivalent to BiONO3·H2O; Bi2O3·N2O5·6H2O )
[Bi6O4(OH)4][Bi6O5(OH)3](NO3)11, which contains two different cations, [Bi6O4(OH)4]6+ and [Bi6O5(OH)3]5+[11]
The compound Bi6O5(OH)3(NO3)5·3H2O (equivalent to 6Bi2O3·5N2O5·9H2O) also contains the octahedral units but this time they are joined to form {[Bi6O5(OH)3]5+}2.[12]
Additionally some oxynitrates have layer structures (a common motif also found in bismuth(III) oxyhalides):
Bi2O2(OH)NO3 (equivalent to BiONO3·1/2H2O) contains "[Bi2O2]2+" layers[13]
^Sadler, Peter J (1991). Sykes, A.G. (ed.). Advances in Inorganic Chemistry. Vol. 36. Academic Press. ch. 1. ISBN0-12-023636-2.
^ abHolleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (ed.), Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter, p. 771, ISBN0-12-352651-5
^Godfrey, S.M.; et al. (1998). "Chapter 4". In Norman, N.C. (ed.). Chemistry of Arsenic, Antimony and Bismuth. Blackie Academic and Professional. ISBN0-7514-0389-X.