In mathematics, a bivector is the vector part of a biquaternion. For biquaternion q = w + xi + yj + zk, w is called the biscalar and xi + yj + zk is its bivector part. The coordinates w, x, y, z are complex numbers with imaginary unit h:
A bivector may be written as the sum of real and imaginary parts:
where and are vectors. Thus the bivector [1]
The Lie algebra of the Lorentz group is expressed by bivectors. In particular, if r1 and r2 are right versors so that , then the biquaternion curve {exp θr1 : θ ∈ R} traces over and over the unit circle in the plane {x + yr1 : x, y ∈ R}. Such a circle corresponds to the space rotation parameters of the Lorentz group.
Now (hr2)2 = (−1)(−1) = +1, and the biquaternion curve {exp θ(hr2) : θ ∈ R} is a unit hyperbola in the plane {x + yr2 : x, y ∈ R}. The spacetime transformations in the Lorentz group that lead to FitzGerald contractions and time dilation depend on a hyperbolic angle parameter. In the words of Ronald Shaw, "Bivectors are logarithms of Lorentz transformations."[2]
The commutator product of this Lie algebra is just twice the cross product on R3, for instance, [i,j] = ij − ji = 2k, which is twice i × j. As Shaw wrote in 1970:
William Rowan Hamilton coined both the terms vector and bivector. The first term was named with quaternions, and the second about a decade later, as in Lectures on Quaternions (1853).[1]: 665 The popular text Vector Analysis (1901) used the term.[4]: 249
Given a bivector r = r1 + hr2, the ellipse for which r1 and r2 are a pair of conjugate semi-diameters is called the directional ellipse of the bivector r.[4]: 436
In the standard linear representation of biquaternions as 2 × 2 complex matrices acting on the complex plane with basis {1, h},
The conjugate transpose of this matrix corresponds to −q, so the representation of bivector q is a skew-Hermitian matrix.
Ludwik Silberstein studied a complexified electromagnetic field E + hB, where there are three components, each a complex number, known as the Riemann–Silberstein vector.[5][6]
"Bivectors [...] help describe elliptically polarized homogeneous and inhomogeneous plane waves – one vector for direction of propagation, one for amplitude."[7]