Black carbon

Black carbon is found worldwide, but its presence and impact are particularly strong in Asia.
Black carbon is in the air and circulates the globe.
Black carbon travels along wind currents from Asian cities and accumulates over the Tibetan Plateau and Himalayan foothills.

Black carbon (BC) is the light-absorbing refractory form of elemental carbon remaining after pyrolysis (e.g., charcoal) or produced by incomplete combustion (e.g., soot).

Tihomir Novakov originated the term black carbon in the 1970s, after identifying black carbon as fine particulate matter (PM ≤ 2.5 μm aerodynamic diameter) in aerosols. Aerosol black carbon occurs in several linked forms. Formed through the incomplete combustion of fossil fuels, biofuel, and biomass, black carbon is one of the main types of soot particle[1] in both anthropogenic and naturally occurring soot.[2][need quotation to verify] As soot, black carbon causes disease and premature death.[2] Because of these human health impacts, many countries have worked to reduce their emissions, making it an easy pollutant to abate in anthropogenic sources.[3]

In climatology, aerosol black carbon is a climate forcing agent contributing to global warming. Black carbon warms the Earth by absorbing sunlight and heating the atmosphere and by reducing albedo when deposited on snow and ice (direct effects) and indirectly by interaction with clouds, with the total forcing of 1.1 W/m2.[4] Black carbon stays in the atmosphere for only several days to weeks. In contrast, potent greenhouse gases have longer lifecycles. For example, carbon dioxide (CO2) has an atmospheric lifetime of more than 100 years.[5] The IPCC and other climate researchers have posited that reducing black carbon is one of the easiest ways to slow down short term global warming.[6][7]

The term black carbon is also used in soil science and geology, referring to deposited atmospheric black carbon or directly incorporated black carbon from vegetation fires.[8][9] Especially in the tropics, black carbon in soils significantly contributes to fertility as it can absorb important plant nutrients.[10]

In climatology, biochar carbon removal sequesters atmospheric carbon as black carbon to slow global warming.

  1. ^ "Black Carbon: A Deadly Air Pollutant". NoMorePlanet.com. 2020-09-13. Archived from the original on 2021-03-04. Retrieved 2020-11-01.
  2. ^ a b Anenberg, Susan C.; Schwartz, Joel; Shindell, Drew; Amann, Markus; Faluvegi, Greg; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Van Dingenen, Rita; Vignati, Elisabetta; Emberson, Lisa; Muller, Nicholas Z.; West, J. Jason; Williams, Martin; Demkine, Volodymyr; Hicks, W. Kevin; Kuylenstierna, Johan; Raes, Frank; Ramanathan, Veerabhadran (June 2012). "Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls". Environmental Health Perspectives. 120 (6): 831–839. Bibcode:2012EnvHP.120..831A. doi:10.1289/ehp.1104301. eISSN 1552-9924. ISSN 0091-6765. PMC 3385429. PMID 22418651.
  3. ^ Cite error: The named reference ReferenceB was invoked but never defined (see the help page).
  4. ^ Bond; et al. (2013). "Bounding the role of black carbon in the climate system: A scientific assessment". J. Geophys. Res. Atmos. 118 (11): 5380–5552. Bibcode:2013JGRD..118.5380B. doi:10.1002/jgrd.50171.
  5. ^ Ramanathan, V.; Carmichael, G. (April 2008). "Global and regional climate changes due to black carbon". Nature Geoscience. 1 (4): 221–227. Bibcode:2008NatGe...1..221R. doi:10.1038/ngeo156.
  6. ^ Cite error: The named reference nytimes.com was invoked but never defined (see the help page).
  7. ^ Cite error: The named reference :0 was invoked but never defined (see the help page).
  8. ^ Masiello, C. A. (2004). "New directions in black carbon organic geochemistry". Marine Chemistry. 92 (1–4): 201–213. Bibcode:2004MarCh..92..201M. doi:10.1016/j.marchem.2004.06.043.
  9. ^ Schmidt, M. W. I.; Noack, A. G. (2000). "Black carbon in soils and sediments: Analysis, distribution, implications and current challenges". Global Biogeochemical Cycles. 14 (3): 777–793. Bibcode:2000GBioC..14..777S. doi:10.1029/1999gb001208.
  10. ^ Glaser, Bruno (28 February 2007). "Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century". Philosophical Transactions of the Royal Society B: Biological Sciences. 362 (1478): 187–196. doi:10.1098/rstb.2006.1978. PMC 2311424. PMID 17255028.