Blue space

View of Brooklyn Bridge Park from Manhattan Bridge
Christmas lights in Medellín, Colombia, in 2023

In urban planning and design, blue space (or blue infrastructure) comprises areas dominated by surface waterbodies or watercourses. In conjunction with greenspace (parks, gardens, etc. specifically: urban open space), it may help in reducing the risks of heat-related illness from high urban temperatures (urban heat island).[1] Substantial urban waterbodies naturally exist as integral features of the geography of many cities because of their historical development, for example the River Thames in London.[2]

Accessible blue spaces can help revitalizing neighborhoods and promote increased social connectedness[3] as seen on waterfront renovation projects like the Chattanooga Waterfront (Chattanooga, Tennessee), the CityDeck in Green Bay, Wisconsin, or the Brooklyn Bridge Park in New York City,[4] further enhanced by waterfront festivals such as the Christmas lights in Medellin, in Colombia. Design guidelines promoting healthy buildings -such as, WELL -managed by The International WELL Building Institute™ (IWBI™),[5] or Fitwel -developed and managed by The Center for Active Design (CfAD),[6] recommend incorporating including and water features as a strategy to improve the health and wellness of the building occupants, and "the 9 foundations of a Healthy Building" -developed at Harvard T.H. Chan School of Public Health-,[7] also recommends indoor access to nature views or nature-inspired elements.

Because neighborhoods with access to attractive natural features are susceptible to gentrification,[8] the social benefits associated with waterbodies can be unequally distributed, with less affluent areas lacking access to good quality blue spaces.[9]

  1. ^ Gunawardena, K.R.; Wells, M.J.; Kershaw, T. (15 April 2017). "Utilising green and bluespace to mitigate urban heat island intensity". Science of the Total Environment. 584–585: 1040–1055. Bibcode:2017ScTEn.584.1040G. doi:10.1016/j.scitotenv.2017.01.158. ISSN 0048-9697. PMID 28161043.
  2. ^ Gunawardena, K.R.; Wells, M.J.; Kershaw, T. (2017). "Utilising green and bluespace to mitigate urban heat island intensity". Science of the Total Environment. 584–585. Elsevier BV: 1040–1055. Bibcode:2017ScTEn.584.1040G. doi:10.1016/j.scitotenv.2017.01.158. ISSN 0048-9697. PMID 28161043.
  3. ^ White, Mathew P.; Elliott, Lewis R.; Gascon, Mireia; Roberts, Bethany; Fleming, Lora E. (1 December 2020). "Blue space, health and well-being: A narrative overview and synthesis of potential benefits". Environmental Research. 191: 110169. Bibcode:2020ER....19110169W. doi:10.1016/j.envres.2020.110169. ISSN 0013-9351. PMID 32971082.
  4. ^ Gamble, David (2016). Rebuilding the American city : design and strategy for the 21st century core. New York, NY. ISBN 9781138798144.{{cite book}}: CS1 maint: location missing publisher (link)
  5. ^ "International WELL Building Institute". www.wellcertified.com.
  6. ^ "Fitwel". www.fitwel.org. Retrieved 1 December 2020.
  7. ^ "9 Foundations of a Healthy Building". 9 Foundations. Retrieved 2020-12-29.
  8. ^ Ngom, Roland; Gosselin, Pierre; Blais, Claudia (1 January 2016). "Reduction of disparities in access to green spaces: Their geographic insertion and recreational functions matter". Applied Geography. 66: 35–51. Bibcode:2016AppGe..66...35N. doi:10.1016/j.apgeog.2015.11.008. ISSN 0143-6228.
  9. ^ Schüle, Steffen Andreas; Hilz, Lisa Karla; Dreger, Stefanie; Bolte, Gabriele (4 April 2019). "Social Inequalities in Environmental Resources of Green and Blue Spaces: A Review of Evidence in the WHO European Region". International Journal of Environmental Research and Public Health. 16 (7): 1216. doi:10.3390/ijerph16071216. ISSN 1660-4601. PMC 6480666. PMID 30987381.