This article needs additional citations for verification. (February 2018) |
In chemistry, bond cleavage, or bond fission, is the splitting of chemical bonds. This can be generally referred to as dissociation when a molecule is cleaved into two or more fragments.[1]
In general, there are two classifications for bond cleavage: homolytic and heterolytic, depending on the nature of the process. The triplet and singlet excitation energies of a sigma bond can be used to determine if a bond will follow the homolytic or heterolytic pathway.[2] A metal−metal sigma bond is an exception because the bond's excitation energy is extremely high, thus cannot be used for observation purposes.[2]
In some cases, bond cleavage requires catalysts. Due to the high bond-dissociation energy of C−H bonds, around 100 kcal/mol (420 kJ/mol), a large amount of energy is required to cleave the hydrogen atom from the carbon and bond a different atom to the carbon.[3]