Borole

Borole
Skeletal formula of borole
Ball-and-stick model of the borole molecule
Space-filling model of the borole molecule
Names
Preferred IUPAC name
1H-Borole
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/C4H5B/c1-2-4-5-3-1/h1-5H ☒N
    Key: XQIMLPCOVYNASM-UHFFFAOYSA-N ☒N
  • InChI=1/C4H5B/c1-2-4-5-3-1/h1-5H
    Key: XQIMLPCOVYNASM-UHFFFAOYAW
  • C1=CC=CB1
Properties
C4H5B
Molar mass 63.89 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Boroles represent a class of molecules known as metalloles, which are heterocyclic 5-membered rings. As such, they can be viewed as structural analogs of cyclopentadiene, pyrrole or furan, with boron replacing a carbon, nitrogen and oxygen atom respectively. They are isoelectronic with the cyclopentadienyl cation C5H+5 or abbreviated as Cp+ and comprise four π electrons. Although Hückel's rule cannot be strictly applied to borole, it is considered to be antiaromatic due to having 4 π electrons.[1] As a result, boroles exhibit unique electronic properties not found in other metalloles.

The parent unsubstituted compound with the chemical formula C4H4BH has yet to be isolated outside a coordination sphere of transition metals.[2] Substituted derivatives, which have been synthesized, can have various substituents at the 4 carbons and boron.[3] The high electron deficiency leads to various reactivities such as metal free hydrogen activation and rearrangements upon cycloaddition which are unobserved in other structural analogues like pyrrole or furan.

Once reduced to the dianion, the borolediide complex gains aromaticity and can then participate in similar reactions as the Cp anion, including forming sandwich complexes.

  1. ^ Alan R. Katritzky, ed. (1993), "The Concept of Aromaticity in Heterocyclic Chemistry", Advances in Heterocyclic Chemistry Volume 56, vol. 56, Academic Press, p. 375, doi:10.1016/S0065-2725(08)60196-8, ISBN 978-0-12-020756-5, retrieved 2010-03-13
  2. ^ Herberich, Gerhard E.; Englert, Ulli; Hostalek, Martin; Laven, Ralf (1991). "Derivate des Borols, XVI Bis(borol)nickel-Komplexe2)". Chemische Berichte. 124 (1): 17–23. doi:10.1002/cber.19911240104. ISSN 1099-0682.
  3. ^ Cite error: The named reference :3 was invoked but never defined (see the help page).