Boussinesq approximation (buoyancy)

In fluid dynamics, the Boussinesq approximation (pronounced [businɛsk], named for Joseph Valentin Boussinesq) is used in the field of buoyancy-driven flow (also known as natural convection). It ignores density differences except where they appear in terms multiplied by g, the acceleration due to gravity. The essence of the Boussinesq approximation is that the difference in inertia is negligible but gravity is sufficiently strong to make the specific weight appreciably different between the two fluids. The existence of Sound waves in a Boussinesq fluid is not possible as sound is the result of density fluctuations within a fluid.

Boussinesq flows are common in nature (such as atmospheric fronts, oceanic circulation, katabatic winds), industry (dense gas dispersion, fume cupboard ventilation), and the built environment (natural ventilation, central heating). The approximation can be used to simplify the equations describing such flows, whilst still describing the flow behaviour to a high degree of accuracy.