Bram van Leer

Bram van Leer
Prof. van Leer at Aerospace Engineering building FXB at University of Michigan
Born
Alma materLeiden University
Known forMUSCL scheme
Scientific career
FieldsCFD
Fluid dynamics
Numerical Analysis
InstitutionsUniversity of Michigan
Doctoral advisorHendrik C. van de Hulst

Bram van Leer is Arthur B. Modine Emeritus Professor of aerospace engineering at the University of Michigan, in Ann Arbor. He specializes in Computational fluid dynamics (CFD), fluid dynamics, and numerical analysis. His most influential work lies in CFD, a field he helped modernize from 1970 onwards. An appraisal of his early work has been given by C. Hirsch (1979)[1]

An astrophysicist by education, van Leer made lasting contributions to CFD in his five-part article series “Towards the Ultimate Conservative Difference Scheme (1972-1979),” where he extended Godunov's finite-volume scheme to the second order (MUSCL). Also in the series, he developed non-oscillatory interpolation using limiters, an approximate Riemann solver, and discontinuous-Galerkin schemes for unsteady advection. Since joining the University of Michigan's Aerospace Engineering Department (1986), he has worked on convergence acceleration by local preconditioning and multigrid relaxation for Euler and Navier-Stokes problems, unsteady adaptive grids, space-environment modeling, atmospheric flow modeling, extended hydrodynamics for rarefied flows, and discontinuous-Galerkin methods. He retired in 2012, forced to give up research because of progressive blindness.

Throughout his career, van Leer's work has had interdisciplinary characteristic. Starting from astrophysics, he first made an impact on weapons research, followed by aeronautics, then space-weather modeling, atmospheric modeling, surface-water modeling and automotive engine modeling, to name the most important fields.

  1. ^ Hirsch, Ch. (1997). "Introduction to "Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method"". Journal of Computational Physics. 135 (2): 227–228. Bibcode:1997JCoPh.135..227H. doi:10.1006/jcph.1997.5757.