This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
The Bregman method is an iterative algorithm to solve certain convex optimization problems involving regularization.[1] The original version is due to Lev M. Bregman, who published it in 1967.[2]
The algorithm is a row-action method accessing constraint functions one by one and the method is particularly suited for large optimization problems where constraints can be efficiently enumerated[citation needed]. The algorithm works particularly well for regularizers such as the norm, where it converges very quickly because of an error-cancellation effect.[3]