In mathematics, Brown's representability theorem in homotopy theory[1] gives necessary and sufficient conditions for a contravariant functor F on the homotopy category Hotc of pointed connected CW complexes, to the category of sets Set, to be a representable functor.
More specifically, we are given
and there are certain obviously necessary conditions for F to be of type Hom(—, C), with C a pointed connected CW-complex that can be deduced from category theory alone. The statement of the substantive part of the theorem is that these necessary conditions are then sufficient. For technical reasons, the theorem is often stated for functors to the category of pointed sets; in other words the sets are also given a base point.