This article needs additional citations for verification. (February 2010) |
Computer memory and data storage types |
---|
Volatile |
Non-volatile |
Bubble memory is a type of non-volatile computer memory that uses a thin film of a magnetic material to hold small magnetized areas, known as bubbles or domains, each storing one bit of data. The material is arranged to form a series of parallel tracks that the bubbles can move along under the action of an external magnetic field. The bubbles are read by moving them to the edge of the material, where they can be read by a conventional magnetic pickup, and then rewritten on the far edge to keep the memory cycling through the material. In operation, bubble memories are similar to delay-line memory systems.
Bubble memory started out as a promising technology in the 1970s, offering performance similar to core memory, memory density similar to hard drives, and no moving parts. This led many to consider it a contender for a "universal memory" that could be used for all storage needs. The introduction of dramatically faster semiconductor memory chips in the early 1970s pushed bubble into the slow end of the scale and it began to be considered mostly as a replacement for disks. The equally dramatic improvements in hard-drive capacity through the early 1980s made it uncompetitive in price terms for mass storage.[1]
Bubble memory was used for some time in the 1970s and 1980s in applications where its non-moving nature was desirable for maintenance or shock-proofing reasons. The introduction of flash storage and similar technologies rendered even this niche uncompetitive, and bubble disappeared entirely by the late 1980s.