Bunyakovsky conjecture

Bunyakovsky conjecture
FieldAnalytic number theory
Conjectured byViktor Bunyakovsky
Conjectured in1857
Known casesPolynomials of degree 1
GeneralizationsBateman–Horn conjecture
Generalized Dickson conjecture
Schinzel's hypothesis H
ConsequencesTwin prime conjecture

The Bunyakovsky conjecture (or Bouniakowsky conjecture) gives a criterion for a polynomial in one variable with integer coefficients to give infinitely many prime values in the sequence It was stated in 1857 by the Russian mathematician Viktor Bunyakovsky. The following three conditions are necessary for to have the desired prime-producing property:

  1. The leading coefficient is positive,
  2. The polynomial is irreducible over the rationals (and integers), and
  3. There is no common factor for all the infinitely many values . (In particular, the coefficients of should be relatively prime. It is not necessary for the values f(n) to be pairwise relatively prime.)

Bunyakovsky's conjecture is that these conditions are sufficient: if satisfies (1)–(3), then is prime for infinitely many positive integers .

A seemingly weaker yet equivalent statement to Bunyakovsky's conjecture is that for every integer polynomial that satisfies (1)–(3), is prime for at least one positive integer : but then, since the translated polynomial still satisfies (1)–(3), in view of the weaker statement is prime for at least one positive integer , so that is indeed prime for infinitely many positive integers . Bunyakovsky's conjecture is a special case of Schinzel's hypothesis H, one of the most famous open problems in number theory.