Burkholderia

Burkholderia
B. pseudomallei colonies on a blood agar plate.
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Pseudomonadota
Class: Betaproteobacteria
Order: Burkholderiales
Family: Burkholderiaceae
Genus: Burkholderia
Yabuuchi et al. 1993[1][2]
Type species
Burkholderia cepacia
(Palleroni and Holmes 1981) Yabuuchi et al. 1993
Species

See text

Burkholderia is a genus of Pseudomonadota whose pathogenic members include the Burkholderia cepacia complex, which attacks humans and Burkholderia mallei, responsible for glanders, a disease that occurs mostly in horses and related animals; Burkholderia pseudomallei, causative agent of melioidosis; and Burkholderia cepacia, an important pathogen of pulmonary infections in people with cystic fibrosis (CF).[3] Burkholderia species is also found in marine environments. S.I. Paul et al. (2021)[4] isolated and characterized Burkholderia cepacia from marine sponges of the Saint Martin's Island of the Bay of Bengal, Bangladesh.[4]

The Burkholderia (previously part of Pseudomonas) genus name refers to a group of virtually ubiquitous Gram-negative, obligately aerobic, rod-shaped bacteria that are motile by means of single or multiple polar flagella, with the exception of Burkholderia mallei, which is nonmotile.[4] Members belonging to the genus do not produce sheaths or prosthecae and are able to use poly-beta-hydroxybutyrate (PHB) for growth. The genus includes both animal and plant pathogens, as well as some environmentally important species. In particular, B. xenovorans (previously named Pseudomonas cepacia then B. cepacia and B. fungorum) is renowned for being catalase positive (affecting patients with chronic granulomatous disease) and its ability to degrade chlororganic pesticides and polychlorinated biphenyls. The conserved RNA structure anti-hemB RNA motif is found in all known bacteria in this genus.[5]

Due to their antibiotic resistance and the high mortality rate from their associated diseases, B. mallei and B. pseudomallei are considered to be potential biological warfare agents, targeting livestock and humans.

  1. ^ Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, et al. (1992). "Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov". Microbiology and Immunology. 36 (12): 1251–75. doi:10.1111/j.1348-0421.1992.tb02129.x. PMID 1283774.
  2. ^ "Validation of the publication of new names and new combinations previously effectively published outside the IJSB—List No. 45". Int J Syst Bacteriol. 43 (2): 298–399. 1993. doi:10.1099/00207713-43-2-398.
  3. ^ Woods DE, Sokol PA (2006). "The genus Burkholderia". In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds.). The Prokaryotes—A Handbook on the Biology of Bacteria (3 ed.). New York: Springer–Verlag. pp. 848–860. doi:10.1007/0-387-30745-1_40. ISBN 978-0-387-25495-1.
  4. ^ a b c Paul, Sulav Indra; Rahman, Md. Mahbubur; Salam, Mohammad Abdus; Khan, Md. Arifur Rahman; Islam, Md. Tofazzal (December 2021). "Identification of marine sponge-associated bacteria of the Saint Martin's island of the Bay of Bengal emphasizing on the prevention of motile Aeromonas septicemia in Labeo rohita". Aquaculture. 545: 737156. Bibcode:2021Aquac.54537156P. doi:10.1016/j.aquaculture.2021.737156. ISSN 0044-8486.
  5. ^ Weinberg Z, Barrick JE, Yao Z, Roth A, Kim JN, Gore J, et al. (2007). "Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline". Nucleic Acids Research. 35 (14): 4809–19. doi:10.1093/nar/gkm487. PMC 1950547. PMID 17621584.