CLARITY

CLARITY[1] is a method of making tissue transparent using acrylamide-based hydrogels built from within, and linked to, the tissue, and as defined in the initial paper, represents "transformation of intact biological tissue into a hybrid form in which specific components are replaced with exogenous elements that provide new accessibility or functionality".[1] When accompanied with antibody or gene-based labeling, CLARITY enables highly detailed pictures of the protein and nucleic acid structure of organs, especially the brain. It was developed by Kwanghun Chung and Karl Deisseroth at the Stanford University School of Medicine.[2]

Several published papers have applied the CLARITY method to a wide range of tissues and disease states such as immuno-oncology for human breast cancer,[3] Alzheimer's disease human brains,[4] mouse spinal cords,[5] multiple sclerosis animal models,[6] and plants.[7] CLARITY has also been combined with other technologies to develop new microscopy methods including confocal expansion microscopy, SPIM light sheet microscopy, and CLARITY-optimized light sheet microscopy (COLM).[8]

  1. ^ a b Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, Zalocusky KA, Mattis J, Denisin AK, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V, Deisseroth K (May 2013). "Structural and molecular interrogation of intact biological systems". Nature. 497 (7449): 332–7. Bibcode:2013Natur.497..332C. doi:10.1038/nature12107. PMC 4092167. PMID 23575631.
  2. ^ Underwood E (April 2013). "Neuroscience. Tissue imaging method makes everything clear". Science. 340 (6129): 131–2. doi:10.1126/science.340.6129.131. PMID 23580500.
  3. ^ Chen Y, Shen Q, White SL, Gokmen-Polar Y, Badve S, Goodman LJ (April 2019). "Three-dimensional imaging and quantitative analysis in CLARITY processed breast cancer tissues". Scientific Reports. 9 (1): 5624. Bibcode:2019NatSR...9.5624C. doi:10.1038/s41598-019-41957-w. PMC 6449377. PMID 30948791.
  4. ^ Ando K, Laborde Q, Lazar A, Godefroy D, Youssef I, Amar M, Pooler A, Potier MC, Delatour B, Duyckaerts C (September 2014). "Inside Alzheimer brain with CLARITY: senile plaques, neurofibrillary tangles and axons in 3-D". Acta Neuropathologica. 128 (3): 457–9. doi:10.1007/s00401-014-1322-y. PMC 4131133. PMID 25069432.
  5. ^ Zhang MD, Tortoriello G, Hsueh B, Tomer R, Ye L, Mitsios N, Borgius L, Grant G, Kiehn O, Watanabe M, Uhlén M, Mulder J, Deisseroth K, Harkany T, Hökfelt TG (March 2014). "Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury". Proceedings of the National Academy of Sciences of the United States of America. 111 (12): E1149-58. Bibcode:2014PNAS..111E1149Z. doi:10.1073/pnas.1402318111. PMC 3970515. PMID 24616509.
  6. ^ Spence RD, Kurth F, Itoh N, Mongerson CR, Wailes SH, Peng MS, MacKenzie-Graham AJ (November 2014). "Bringing CLARITY to gray matter atrophy". NeuroImage. 101: 625–32. doi:10.1016/j.neuroimage.2014.07.017. PMC 4437539. PMID 25038439.
  7. ^ Palmer WM, Martin AP, Flynn JR, Reed SL, White RG, Furbank RT, Grof CP (September 2015). "PEA-CLARITY: 3D molecular imaging of whole plant organs". Scientific Reports. 5: 13492. Bibcode:2015NatSR...513492P. doi:10.1038/srep13492. PMC 4556961. PMID 26328508.
  8. ^ Tomer R, Ye L, Hsueh B, Deisseroth K (July 2014). "Advanced CLARITY for rapid and high-resolution imaging of intact tissues". Nature Protocols. 9 (7): 1682–97. doi:10.1038/nprot.2014.123. PMC 4096681. PMID 24945384.