CMB cold spot

The circled area is the cold spot. Black lines in the Planck's CMB map indicates each constellation, cold spot is in Eridanus constellation. The blue circle is the equatorial line in the celestial sphere. Image generated with Celestia.
The circled area is the cold spot in the WMAP.

The CMB Cold Spot or WMAP Cold Spot is a region of the sky seen in microwaves that has been found to be unusually large and cold relative to the expected properties of the cosmic microwave background radiation (CMBR). The "Cold Spot" is approximately 70 μK (0.00007 K) colder than the average CMB temperature (approximately 2.7 K), whereas the root mean square of typical temperature variations is only 18 μK.[1][note 1] At some points, the "cold spot" is 140 μK colder than the average CMB temperature.[2]

The radius of the "cold spot" subtends about 5°; it is centered at the galactic coordinate lII = 207.8°, bII = −56.3° (equatorial: α = 03h 15m 05s, δ = −19° 35′ 02″). It is, therefore, in the Southern Celestial Hemisphere, in the direction of the constellation Eridanus.

Typically, the largest fluctuations of the primordial CMB temperature occur on angular scales of about 1°. Thus a cold region as large as the "cold spot" appears very unlikely, given generally accepted theoretical models. Various alternative explanations exist, including a so-called Eridanus Supervoid or Great Void that may exist between us and the primordial CMB (foreground voids can cause cold spots against the CMB). Such a void would affect the observed CMB via the integrated Sachs–Wolfe effect, and would be one of the largest structures in the observable universe. This would be an extremely large region of the universe, roughly 150 to 300 Mpc or 500 million to one billion light-years across and 6 to 10 billion light years away,[3] at redshift , containing a density of matter much smaller than the average density at that redshift.[citation needed]

  1. ^ Wright, E.L. (2004). "Theoretical Overview of Cosmic Microwave Background Anisotropy". In W. L. Freedman (ed.). Measuring and Modeling the Universe. Carnegie Observatories Astrophysics Series. Cambridge University Press. p. 291. arXiv:astro-ph/0305591. Bibcode:2004mmu..symp..291W. ISBN 978-0-521-75576-4.
  2. ^ Woo, Marcus. "The largest thing in the universe". BBC. Retrieved 14 August 2015.
  3. ^ Chown, Marcus (2007). "The void: Imprint of another universe?". New Scientist. 196 (2631): 34–37. doi:10.1016/s0262-4079(07)62977-7.


Cite error: There are <ref group=note> tags on this page, but the references will not show without a {{reflist|group=note}} template (see the help page).