COSMO-RS

COSMO-RS (short for COnductor like Screening MOdel for Real Solvents)[1][2][3] is a quantum chemistry based equilibrium thermodynamics method with the purpose of predicting chemical potentials μ in liquids. It processes the screening charge density σ on the surface of molecules to calculate the chemical potential μ of each species in solution. Perhaps in dilute solution a constant potential must be considered. As an initial step a quantum chemical COSMO[4] calculation for all molecules is performed and the results (e.g. the screening charge density) are stored in a database. In a separate step COSMO-RS uses the stored COSMO results to calculate the chemical potential of the molecules in a liquid solvent or mixture. The resulting chemical potentials are the basis for other thermodynamic equilibrium properties such as activity coefficients, solubility, partition coefficients, vapor pressure and free energy of solvation. The method was developed to provide a general prediction method with no need for system specific adjustment.

Due to the use of σ from COSMO calculations, COSMO-RS does not require functional group parameters. Quantum chemical effects like group-group interactions, mesomeric effects and inductive effects also are incorporated into COSMO-RS by this approach.

The COSMO-RS method was first published in 1995 by A. Klamt.[1] A refined version of COSMO-RS was published in 1998 [5] and is the basis for newer developments and reimplementations.[6][7][8][9][10]

  1. ^ a b "Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena", A. Klamt, J. Phys. Chem., 99, 2224-2235 (1995), DOI: 10.1021/j100007a062
  2. ^ Klamt, Andreas. (2007). COSMO-RS : from quantum chemistry to fluid phase thermodynamics and drug design. Elsevier. ISBN 978-0-08-045553-2. OCLC 1226672539.
  3. ^ Klamt, Andreas; Eckert, Frank; Arlt, Wolfgang (2010-06-15). "COSMO-RS: An Alternative to Simulation for Calculating Thermodynamic Properties of Liquid Mixtures". Annual Review of Chemical and Biomolecular Engineering. 1 (1): 101–122. doi:10.1146/annurev-chembioeng-073009-100903. ISSN 1947-5438. PMID 22432575.
  4. ^ "COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and its Gradient", A. Klamt and G. Schüürmann, J. Chem. Soc. Perkin Trans. II 799-805 (1993) doi:10.1039/P29930000799
  5. ^ "Refinement and Parametrization of COSMO-RS", A. Klamt, V. Jonas, T. Bürger and J. C. W. Lohrenz, J. Phys. Chem. A 102, 5074-5085 (1998), doi:10.1021/jp980017s
  6. ^ "A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model", S.-T. Lin and S.I. Sandler, Ind. Eng. Chem. Res., 41 (5), 899–913 (2002), doi:10.1021/ie001047w
  7. ^ "Performance of a Conductor-Like Screening Model for Real Solvents Model in Comparison to Classical Group Contribution Methods", H. Grensemann and J. Gmehling, Ind. Eng. Chem. Res., 44 (5), 1610–1624 (2005), doi:10.1021/ie049139z
  8. ^ "Infinite Dilution Activity Coefficients for Trihexyltetradecyl Phosphonium Ionic Liquids: Measurements and COSMO-RS Prediction", T. Banerjee and A. Khanna, J. Chem. Eng. Data, 51 (6), 2170–2177 (2006), doi:10.1021/je0602925
  9. ^ "An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package. Part II. COSMO for real solvents", C.C. Pye, T. Ziegler, E. van Lenthe, J.N. Louwen, Can. J. Chem. 87, 790 (2009), doi:10.1139/V09-008
  10. ^ "On the influence of basis sets and quantum chemical methods on the prediction accuracy of COSMO-RS", R. Franke, B. Hannebauer, Phys. Chem. Chem. Phys., 13, 21344-21350 (2011), doi:10.1039/C1CP22317H