Cake number

Three orthogonal planes slice a cake into at most eight (C3) pieces
Animation showing the cutting planes required to cut a cake into 15 pieces with 4 slices (representing the 5th cake number). Fourteen of the pieces would have an external surface, with one tetrahedron cut out of the middle.

In mathematics, the cake number, denoted by Cn, is the maximum of the number of regions into which a 3-dimensional cube can be partitioned by exactly n planes. The cake number is so-called because one may imagine each partition of the cube by a plane as a slice made by a knife through a cube-shaped cake. It is the 3D analogue of the lazy caterer's sequence.

The values of Cn for n = 0, 1, 2, ... are given by 1, 2, 4, 8, 15, 26, 42, 64, 93, 130, 176, 232, ... (sequence A000125 in the OEIS).