Event type | Supernova |
---|---|
IIb[1] | |
Date | 1947 by Martin Ryle and Francis Graham-Smith) |
Constellation | Cassiopeia |
Right ascension | 23h 23m 24s |
Declination | +58° 48.9′ |
Epoch | J2000 |
Galactic coordinates | 111.734745°, −02.129570° |
Distance | c. 11,000 ly[2] |
Remnant | Shell |
Host | Milky Way |
Notable features | Strongest radio source beyond our solar system |
Peak apparent magnitude | c. 6 |
Other designations | SN 1671, SN 1667, SN 1680, SNR G111.7-02.1, 1ES 2321+58.5, 3C 461, 3C 461.0, 4C 58.40, 8C 2321+585, 1RXS J232325.4+584838, 3FHL J2323.4+5848, 2U 2321+58, 3A 2321+585, 3CR 461, 3U 2321+58, 4U 2321+58, AJG 109, CTB 110, INTREF 1108, [DGW65] 148, PBC J2323.3+5849, 2FGL J2323.4+5849, 3FGL J2323.4+5849, 2FHL J2323.4+5848 |
Preceded by | SN 1604 |
Followed by | G1.9+0.3 (unobserved, c. 1868), SN 1885A (next observed) |
Related media on Commons | |
Cassiopeia A (Cas A) (supernova remnant (SNR) in the constellation Cassiopeia and the brightest extrasolar radio source in the sky at frequencies above 1 GHz. The supernova occurred approximately 11,000 light-years (3.4 kpc) away within the Milky Way;[2][3] given the width of the Orion Arm, it lies in the next-nearest arm outwards, the Perseus Arm, about 30 degrees from the Galactic anticenter. The expanding cloud of material left over from the supernova now appears approximately 10 light-years (3 pc) across from Earth's perspective. It has been seen in wavelengths of visible light with amateur telescopes down to 234 mm (9.25 in) with filters.[4]
) is aIt is estimated that light from the supernova itself first reached Earth near the 1690s, although there are no definitively corresponding records from then. Cas A is circumpolar at and above mid-Northern latitudes which had extensive records and basic telescopes. Its likely omission in records is probably due to interstellar dust absorbing optical wavelength radiation before it reached Earth, although it is possible that it was recorded as a sixth magnitude star 3 Cassiopeiae by John Flamsteed. Possible explanations lean toward the idea that the source star was unusually massive and had previously ejected much of its outer layers. These outer layers would have cloaked the star and absorbed much of the visible-light emission as the inner star collapsed.
Cas A was among the first discrete astronomical radio sources found. Its discovery was reported in 1948 by Martin Ryle and Francis Graham-Smith, astronomers at Cambridge, based on observations with the Long Michelson Interferometer.[5] The optical component was first identified in 1950.[6]
Krause
was invoked but never defined (see the help page).Fabian2008
was invoked but never defined (see the help page).