Caulobacter crescentus

Caulobacter crescentus
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Pseudomonadota
Class: Alphaproteobacteria
Order: Caulobacterales
Family: Caulobacteraceae
Genus: Caulobacter
Species:
C. crescentus
Binomial name
Caulobacter crescentus
Poindexter 1964

Caulobacter crescentus is a Gram-negative, oligotrophic bacterium widely distributed in fresh water lakes and streams. The taxon is more properly known as Caulobacter vibrioides (Henrici and Johnson 1935).[1]

C. crescentus is an important model organism for studying the regulation of the cell cycle, asymmetric cell division, and cellular differentiation. Caulobacter daughter cells have two very different forms. One daughter is a mobile "swarmer" cell that has a single flagellum at one cell pole that provides swimming motility for chemotaxis. The other daughter, called the "stalked" cell, has a tubular stalk structure protruding from one pole that has an adhesive holdfast material on its end, with which the stalked cell can adhere to surfaces. Swarmer cells differentiate into stalked cells after a short period of motility. Chromosome replication and cell division only occurs in the stalked cell stage.

C. crescentus derives its name from its crescent shape, which is caused by the protein crescentin. It is an interesting organism to study because it inhabits nutrient-poor aquatic environments. Their ability to thrive in low levels of nutrients is facilitated by its dimorphic developmental cycle. The swarmer cell has a flagellum that protrudes from a single pole and is unable to initiate DNA replication unless differentiated into a stalked cell. The differentiation process includes a morphological transition characterized by ejection of its flagellum and growth of a stalk at the same pole. Stalked cells can elongate and replicate their DNA while growing a flagellum at the opposite pole, giving rise to a pre-divisional cell. Although the precise function of stalks is still being investigated, it is likely that the stalks are involved in the uptake of nutrients in nutrient-limited conditions.[2] Its use as a model originated with developmental biologist Lucy Shapiro.[3][4]

  1. ^ Cite error: The named reference vibrioides was invoked but never defined (see the help page).
  2. ^ Ausmees, Nora; Kuhn, Jeffrey R.; Jacobs-Wagner, Christine (December 2003). "The bacterial cytoskeleton: an intermediate filament-like function in cell shape". Cell. 115 (6): 705–13. doi:10.1016/S0092-8674(03)00935-8. PMID 14675535. S2CID 14459851.
  3. ^ Conger, Krista (March 31, 2009). "Top Canadian Prize Goes to Stanford Scientist Lucy Shapiro for Bringing Cell Biology into Three Dimensions". Business Wire. Retrieved 14 May 2015.
  4. ^ "2014 Lucy Shapiro". Greengard Prize. 2014. Archived from the original on 12 August 2017. Retrieved 14 May 2015.