Cayley's theorem

In group theory, Cayley's theorem, named in honour of Arthur Cayley, states that every group G is isomorphic to a subgroup of a symmetric group.[1] More specifically, G is isomorphic to a subgroup of the symmetric group whose elements are the permutations of the underlying set of G. Explicitly,

  • for each , the left-multiplication-by-g map sending each element x to gx is a permutation of G, and
  • the map sending each element g to is an injective homomorphism, so it defines an isomorphism from G onto a subgroup of .

The homomorphism can also be understood as arising from the left translation action of G on the underlying set G.[2]

When G is finite, is finite too. The proof of Cayley's theorem in this case shows that if G is a finite group of order n, then G is isomorphic to a subgroup of the standard symmetric group . But G might also be isomorphic to a subgroup of a smaller symmetric group, for some ; for instance, the order 6 group is not only isomorphic to a subgroup of , but also (trivially) isomorphic to a subgroup of .[3] The problem of finding the minimal-order symmetric group into which a given group G embeds is rather difficult.[4][5]

Alperin and Bell note that "in general the fact that finite groups are imbedded in symmetric groups has not influenced the methods used to study finite groups".[6]

When G is infinite, is infinite, but Cayley's theorem still applies.

  1. ^ Jacobson (2009, p. 38)
  2. ^ Jacobson (2009, p. 72, ex. 1)
  3. ^ Peter J. Cameron (2008). Introduction to Algebra, Second Edition. Oxford University Press. p. 134. ISBN 978-0-19-852793-0.
  4. ^ Johnson, D. L. (1971). "Minimal Permutation Representations of Finite Groups". American Journal of Mathematics. 93 (4): 857–866. doi:10.2307/2373739. JSTOR 2373739.
  5. ^ Grechkoseeva, M. A. (2003). "On Minimal Permutation Representations of Classical Simple Groups". Siberian Mathematical Journal. 44 (3): 443–462. doi:10.1023/A:1023860730624. S2CID 126892470.
  6. ^ J. L. Alperin; Rowen B. Bell (1995). Groups and representations. Springer. p. 29. ISBN 978-0-387-94525-5.