Cell cycle analysis

Cell cycle analysis by DNA content measurement is a method that most frequently employs flow cytometry to distinguish cells in different phases of the cell cycle. Before analysis, the cells are usually permeabilised and treated with a fluorescent dye that stains DNA quantitatively, such as propidium iodide (PI) or 4,6-diamidino-2-phenylindole (DAPI). The fluorescence intensity of the stained cells correlates with the amount of DNA they contain. As the DNA content doubles during the S phase, the DNA content (and thereby intensity of fluorescence) of cells in the G0 phase and G1 phase (before S), in the S phase, and in the G2 phase and M phase (after S) identifies the cell cycle phase position in the major phases (G0/G1 versus S versus G2/M phase) of the cell cycle. The cellular DNA content of individual cells is often plotted as their frequency histogram to provide information about relative frequency (percentage) of cells in the major phases of the cell cycle.

Cell cycle anomalies revealed on the DNA content frequency histogram are often observed after different types of cell damage, for example such DNA damage that interrupts the cell cycle progression at certain checkpoints. Such an arrest of the cell cycle progression can lead either to an effective DNA repair, which may prevent transformation of normal into a cancer cell (carcinogenesis), or to cell death, often by the mode of apoptosis. An arrest of cells in G0 or G1 is often seen as a result of lack of nutrients (growth factors), for example after serum deprivation. Cell cycle analysis was first described in 1969 at Los Alamos Scientific Laboratory by a group from the University of California using the Feulgen staining technique.[1] The first protocol for cell cycle analysis using propidium iodide staining was presented in 1975 by Awtar Krishan from Harvard Medical School and is still widely cited today.[2]

Multiparameter analysis of the cell cycle includes, in addition to measurement of cellular DNA content, other cell cycle related constituents/features. The concurrent measurement of cellular DNA and RNA content, or DNA susceptibility to denaturation at low pH using the metachromatic dye acridine orange, reveals the G1Q, G1A, and G1B cell cycle compartments and also makes it possible to discriminate between S, G2 and mitotic cells.[3] The cells in G1Q are quiescent, temporarily withdrawn from the cell cycle (also identifiable as G0), the G1A are in the growth phase while G1B are the cells just prior entering S, with their growth (RNA and protein content, size) similar to that of the cells initiating DNA replication. Similar cell cycle compartments are also recognized by multiparameter analysis that includes measurement of expression of cyclin D1, cyclin E, cyclin A and cyclin B1, each in relation to DNA content [4] Concurrent measurement of DNA content and of incorporation of DNA precursor 5-bromo-2'-deoxyuridine (BrdU) by flow cytometry is an especially useful assay, that has been widely used in analysis of the cell cycle in vitro and in vivo.[5] However, the incorporation of 5-ethynyl-2'-deoxyuridine (EdU), the precursor whose detection offers certain advantages over BrdU, has now become the preferred methodology do detect DNA replicating (S-phase) cells.[6]

  1. ^ Van Dilla MA, Trujillo TT, Mullaney PF, Coulter JR (14 March 1969). "Cell Microfluorometry: A Method for Rapid Fluorescence Measurement". Science. 163 (3872): 1213–1214. Bibcode:1969Sci...163.1213V. doi:10.1126/science.163.3872.1213. PMID 5812751. S2CID 13190489.
  2. ^ Krishan A. (July 1975). "Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining". The Journal of Cell Biology. 66 (1): 188–193. doi:10.1083/jcb.66.1.188. PMC 2109516. PMID 49354.
  3. ^ Darzynkiewicz Z, Traganos F, Melamed MR (1980). "New cell cycle compartments identified by multiparameter flow cytometry". Cytometry. 1 (2): 98–108. doi:10.1002/cyto.990010203. PMID 6170495.
  4. ^ Darzynkiewicz Z, Gong JP, Juan G, Ardelt B, Traganos F (1996). "Cytometry of cyclin proteins". Cytometry. 25 (1): 1–13. doi:10.1002/(SICI)1097-0320(19960901)25:1<1::AID-CYTO1>3.0.CO;2-N. PMID 8875049.
  5. ^ Gray JW, Dolbeare F, Pallavicini MG, Beisker W, Waldman F (1986). "Cell cycle analysis using flow cytometry". Int J Radiat Biol Relat Stud Phys Chem Med. 49 (2): 237–55. doi:10.1080/09553008514552531. PMID 3510993.
  6. ^ Buck SB, Bradford J, Gee KR, Agnew BJ, Clarke ST, Salic A (2008). "Detection of S-phase cell cycle progression using 5-ethynyl-2'-deoxyuridine incorporation with click chemistry, an alternative to using 5-bromo-2'-deoxyuridine antibodies". BioTechniques. 44 (7): 927–9. doi:10.2144/000112812. PMID 18533904.