Chaperonin

TCP-1/cpn60 chaperonin family
Structure of the bacterial chaperonin GroEL.[1]
Identifiers
SymbolCpn60_TCP1
PfamPF00118
InterProIPR002423
PROSITEPDOC00610
CATH5GW5
SCOP21grl / SCOPe / SUPFAM
CDDcd00309
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB1sx3K:23-525 1kpoZ:23-525 1fyaA:190-375

1gruH:23-525 1xckF:23-525 1kp8E:23-525 1pcqJ:23-524 1aonJ:23-524 1mnfI:23-525 1svtJ:23-524 2c7dK:23-525 1dkdC:190-335 1j4zL:23-525 1oelE:23-524 2c7cH:23-525 1gr5H:23-525 1sx4E:23-524 1kid :190-375 1gr6F:23-525 1ss8B:23-524 1fy9A:190-375 1dk7A:190-335 1jon :190-335 1la1A:187-378 1iokA:23-526 1wf4e:22-526 1we3E:22-526 1sjpB:42-522 1srvA:1-143 1a6dB:33-521 1a6eB:33-521 1e0rB:215-366 1ass :214-364

1asx :214-364 1gn1H:210-380 1gmlB:210-380

HSP60, also known as chaperonins (Cpn), is a family of heat shock proteins originally sorted by their 60kDa molecular mass. They prevent misfolding of proteins during stressful situations such as high heat, by assisting protein folding. HSP60 belong to a large class of molecules that assist protein folding, called molecular chaperones.[2][3]

Newly made proteins usually must fold from a linear chain of amino acids into a three-dimensional tertiary structure. The energy to fold proteins is supplied by non-covalent interactions between the amino acid side chains of each protein, and by solvent effects. Most proteins spontaneously fold into their most stable three-dimensional conformation, which is usually also their functional conformation, but occasionally proteins mis-fold. Molecular chaperones catalyze protein refolding by accelerating partial unfolding of misfolded proteins, aided by energy supplied by the hydrolysis of adenosine triphosphate (ATP). Chaperonin proteins may also tag misfolded proteins to be degraded.[3]

  1. ^ Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (October 1994). "The crystal structure of the bacterial chaperonin GroEL at 2.8 A". Nature. 371 (6498): 578–86. Bibcode:1994Natur.371..578B. doi:10.1038/371578a0. PMID 7935790. S2CID 4341993.
  2. ^ "Howard Hughes Investigators: Arthur L. Horwich, M.D." Archived from the original on 2019-07-26. Retrieved 2011-09-12.
  3. ^ a b Conway de Macario E, Yohda M, Macario AJ, Robb FT (2019-03-15). "Bridging human chaperonopathies and microbial chaperonins". Communications Biology. 2 (1): 103. doi:10.1038/s42003-019-0318-5. PMC 6420498. PMID 30911678.