Chemical ecology

Chemical ecology is a vast and interdisciplinary field utilizing biochemistry, biology, ecology, and organic chemistry for explaining observed interactions of living things and their environment through chemical compounds (e.g. ecosystem resilience and biodiversity).[1][2] Early examples of the field trace back to experiments with the same plant genus in different environments, interaction of plants and butterflies, and the behavioral effect of catnip.[3][4][5] Chemical ecologists seek to identify the specific molecules (i.e. semiochemicals) that function as signals mediating community or ecosystem processes and to understand the evolution of these signals.[6] The chemicals behind such roles are typically small, readily-diffusible organic molecules that act over various distances that are dependent on the environment (i.e. terrestrial or aquatic) but can also include larger molecules and small peptides.[7][8]

gas chromatography

In practice, chemical ecology relies extensively on chromatographic techniques, such as thin-layer chromatography, high performance liquid chromatography, gas chromatography, mass spectrometry (MS), and nuclear magnetic resonance (NMR) to isolate and identify bioactive metabolites.[2][6] To identify molecules with the sought-after activity, chemical ecologists often make use of bioassay-guided fractionation.[8] Today, chemical ecologists also incorporate genetic and genomic techniques to understand the biosynthetic and signal transduction pathways underlying chemically mediated interactions. [2][8][9]

  1. ^ Bunin, Barry A. (December 1996). "Chemical Ecology: The Chemistry of Biotic Interaction.Thomas Eisner , Jerrold Meinwald". The Quarterly Review of Biology. 71 (4): 562. doi:10.1086/419565. ISSN 0033-5770.
  2. ^ a b c Dyer, Lee A.; Philbin, Casey S.; Ochsenrider, Kaitlin M.; Richards, Lora A.; Massad, Tara J.; Smilanich, Angela M.; Forister, Matthew L.; Parchman, Thomas L.; Galland, Lanie M. (2018-05-25). "Modern approaches to study plant–insect interactions in chemical ecology". Nature Reviews Chemistry. 2 (6): 50–64. doi:10.1038/s41570-018-0009-7. ISSN 2397-3358. S2CID 49362070.
  3. ^ Hartmann, Thomas (2008-03-25). "The lost origin of chemical ecology in the late 19th century". Proceedings of the National Academy of Sciences. 105 (12): 4541–4546. doi:10.1073/pnas.0709231105. ISSN 0027-8424. PMC 2290813. PMID 18218780.
  4. ^ Ehrlich, Paul R.; Raven, Peter H. (December 1964). "Butterflies and Plants: A Study in Coevolution". Evolution. 18 (4): 586–608. doi:10.1111/j.1558-5646.1964.tb01674.x. ISSN 0014-3820.
  5. ^ Eisner, Thomas (1964-12-04). "Catnip: Its Raison d'Être". Science. 146 (3649): 1318–1320. Bibcode:1964Sci...146.1318E. doi:10.1126/science.146.3649.1318. ISSN 0036-8075. PMID 14207462.
  6. ^ a b Inamdar, Arati A.; Morath, Shannon; Bennett, Joan W. (2020-09-08). "Fungal Volatile Organic Compounds: More Than Just a Funky Smell?". Annual Review of Microbiology. 74 (1): 101–116. doi:10.1146/annurev-micro-012420-080428. ISSN 0066-4227. PMID 32905756.
  7. ^ Wood William F. (1983). "Chemical Ecology: Chemical Communication in Nature". Journal of Chemical Education. 60 (7): 531–539. Bibcode:1983JChEd..60..531W. doi:10.1021/ed060p531.
  8. ^ a b c Schmidt, Ruth; Ulanova, Dana; Wick, Lukas Y; Bode, Helge B; Garbeva, Paolina (2019-07-09). "Microbe-driven chemical ecology: past, present and future". The ISME Journal. 13 (11): 2656–2663. Bibcode:2019ISMEJ..13.2656S. doi:10.1038/s41396-019-0469-x. ISSN 1751-7362. PMC 6794290. PMID 31289346.
  9. ^ Meinwald, J.; Eisner, T. (19 March 2008). "Chemical ecology in retrospect and prospect". Proceedings of the National Academy of Sciences. 105 (12): 4539–4540. doi:10.1073/pnas.0800649105. ISSN 0027-8424. PMC 2290750. PMID 18353981.