Chernoff's distribution

In probability theory, Chernoff's distribution, named after Herman Chernoff, is the probability distribution of the random variable

where W is a "two-sided" Wiener process (or two-sided "Brownian motion") satisfying W(0) = 0. If

then V(0, c) has density

where gc has Fourier transform given by

and where Ai is the Airy function. Thus fc is symmetric about 0 and the density ƒZ = ƒ1. Groeneboom (1989)[1] shows that

where is the largest zero of the Airy function Ai and where . In the same paper, Groeneboom also gives an analysis of the process . The connection with the statistical problem of estimating a monotone density is discussed in Groeneboom (1985).[2] Chernoff's distribution is now known to appear in a wide range of monotone problems including isotonic regression.[3]

The Chernoff distribution should not be confused with the Chernoff geometric distribution[4] (called the Chernoff point in information geometry) induced by the Chernoff information.

  1. ^ Groeneboom, Piet (1989). "Brownian motion with a parabolic drift and Airy functions". Probability Theory and Related Fields. 81: 79–109. doi:10.1007/BF00343738. MR 0981568. S2CID 119980629.
  2. ^ Groeneboom, Piet (1985). Le Cam, L.E.; Olshen, R. A. (eds.). Estimating a monotone density. Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, vol. II. pp. 539–555.
  3. ^ Groeneboom, Piet; Jongbloed, Geurt (2018). "Some Developments in the Theory of Shape Constrained Inference". Statistical Science. 33 (4): 473–492. doi:10.1214/18-STS657. S2CID 13672538.
  4. ^ Nielsen, Frank (2022). "Revisiting Chernoff Information with Likelihood Ratio Exponential Families". Entropy. 24 (10). MDPI: 1400. doi:10.3390/e24101400. PMC 9601539. PMID 37420420.