Chirped pulse amplification

Chirped pulse amplification (CPA) is a technique for amplifying an ultrashort laser pulse up to the petawatt level, with the laser pulse being stretched out temporally and spectrally, then amplified, and then compressed again.[1] The stretching and compression uses devices that ensure that the different color components of the pulse travel different distances.

CPA for lasers was introduced by Donna Strickland and Gérard Mourou at the University of Rochester in the mid-1980s,[2] work for which they received the Nobel Prize in Physics in 2018.[3]

CPA is the technique used by most high-powered lasers in the world.

  1. ^ Paschotta, Rüdiger (July 1, 2017). "Chirped-pulse Amplification". RP Photonics Encyclopedia. Retrieved October 2, 2018.
  2. ^ Strickland, Donna; Mourou, Gerard (1985). "Compression of amplified chirped optical pulses". Optics Communications. 56 (3). Elsevier BV: 219–221. Bibcode:1985OptCo..56..219S. CiteSeerX 10.1.1.673.148. doi:10.1016/0030-4018(85)90120-8. ISSN 0030-4018.
  3. ^ "The Nobel Prize in Physics 2018". Nobel Foundation. Retrieved 2 October 2018.