Chrysophanol

Chrysophanol
Names
Preferred IUPAC name
1,8-Dihydroxy-3-methylanthracene-9,10-dione
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.006.885 Edit this at Wikidata
KEGG
UNII
  • InChI=1S/C15H10O4/c1-7-5-9-13(11(17)6-7)15(19)12-8(14(9)18)3-2-4-10(12)16/h2-6,16-17H,1H3
    Key: LQGUBLBATBMXHT-UHFFFAOYSA-N
  • InChI=1/C15H10O4/c1-7-5-9-13(11(17)6-7)15(19)12-8(14(9)18)3-2-4-10(12)16/h2-6,16-17H,1H3
    Key: LQGUBLBATBMXHT-UHFFFAOYAW
  • CC1=CC2=C(C(=C1)O)C(=O)C3=C(C2=O)C=CC=C3O
Properties
C15H10O4
Molar mass 254.241 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Chrysophanol, also known as chrysophanic acid, is a fungal isolate and a natural anthraquinone. It is a C-3 methyl substituted chrysazin of the trihydroxyanthraquinone family.[1]

Chrysophanol (other names; 1,8-dihydroxy-3-methyl-anthraquinone and chrysophanic acid) was found commonly within Chinese medicine and is a naturally occurring anthraquinone.[2] Studies have been conducted on the benefits of chrysophanol and have found that it can aid in preventing cancer, diabetes, asthma, osteoporosis, retinal degeneration, Alzheimer's disease, osteoarthritis, and atherosclerosis.[2]

Its most common effects are of chemotherapeutic and neuroprotective properties.

  1. ^ PubChem. "Chrysophanol". pubchem.ncbi.nlm.nih.gov. Retrieved 2021-05-31.
  2. ^ a b Xie L, Tang H, Song J, Long J, Zhang L, Li X (October 2019). "Chrysophanol: a review of its pharmacology, toxicity and pharmacokinetics". The Journal of Pharmacy and Pharmacology. 71 (10): 1475–1487. doi:10.1111/jphp.13143. PMID 31373015. S2CID 199380101.