In mathematics and statistics, a circular mean or angular mean is a mean designed for angles and similar cyclic quantities, such as times of day, and fractional parts of real numbers.
This is necessary since most of the usual means may not be appropriate on angle-like quantities. For example, the arithmetic mean of 0° and 360° is 180°, which is misleading because 360° equals 0° modulo a full cycle.[1] As another example, the "average time" between 11 PM and 1 AM is either midnight or noon, depending on whether the two times are part of a single night or part of a single calendar day.
The circular mean is one of the simplest examples of directional statistics and of statistics of non-Euclidean spaces. This computation produces a different result than the arithmetic mean, with the difference being greater when the angles are widely distributed. For example, the arithmetic mean of the three angles 0°, 0°, and 90° is (0° + 0° + 90°) / 3 = 30°, but the vector mean is arctan(1/2) = 26.565°. Moreover, with the arithmetic mean the circular variance is only defined ±180°.