Climate stabilization wedge

Climate stabilization wedges are used to describe possible climate change mitigation scenarios and their impact, through the grouping of different types of interventions into "wedges" representing potential decreases in CO2 emissions. When stacked on top of each other, wedges form a "stabilization triangle" that represents the estimated amount of carbon that needs to be removed from the atmosphere to flatten carbon emissions[1] and prevent atmospheric carbon from doubling.[2] This framework is used to organize complex information about mitigation strategies for presentation to policy makers and the public, with the goal of stimulating both technological change and policy actions to deploy precommercial and existing technologies.[3]

The approach presents global warming as a problem which can be attacked using commercially available technologies to reduce CO2 emissions. Selecting a set of mitigation strategies to create a stabilization triangle is a planning framework for identifying possible interventions for the reduction of emissions. The objective is to stabilize CO
2
concentrations under 500 ppm over fifty years, by choosing strategies for mitigation as represented by wedges.[3][4][1] Each wedge represents 25 gigatons of avoided carbon emissions over a fifty-year period.[5][6][2]

This approach to presenting complex information about mitigation was introduced in 2004 by Princeton University researchers Stephen Pacala and Robert H. Socolow.[1][2][7] In 2004, Pacala and Socolow estimated that seven wedges worth of improvements would be needed to mitigate climate change by 2054, if serious actions were taken immediately.[8] In 2011, they increased their estimate from seven to nine wedges, given the ongoing increase in emissions since the original 2004 paper.[8] Some researchers have estimated that the number of wedges needed to mitigate climate change may be much higher.[6][9][4] A 2020 update by the Carbon Mitigation Initiative projected mitigation efforts to 2060 with eight wedges.[1] Both the urgency and the difficulty of achieving substantial changes are emphasized.[4]

In 2021, a summary of progress towards 16 climate mitigation strategies, expressed in terms of stabilization wedges, reported that while some areas have seen substantial progress (e.g. improving vehicle efficiency) others have seen little or negative progress (e.g. loss of tropical tree cover in Asia and Africa). Net progress as of 2021 is estimated to be only about 1.5 ± 0.9 of the originally-estimated seven wedges.[10]

  1. ^ a b c d Kibert, Charles J. (12 April 2022). Sustainable Construction: Green Building Design and Delivery. John Wiley & Sons. ISBN 978-1-119-70645-8.
  2. ^ a b c Arnold, Denis G. (31 March 2011). The Ethics of Global Climate Change. Cambridge University Press. ISBN 978-1-139-50100-2.
  3. ^ a b Gallagher, Kelly Sims; Holdren, John P.; Sagar, Ambuj D. (1 November 2006). "Energy-Technology Innovation". Annual Review of Environment and Resources. 31 (1): 193–237. doi:10.1146/annurev.energy.30.050504.144321. ISSN 1543-5938.
  4. ^ a b c Kolbert, Elizabeth (1 May 2005). "The Climate of Man, Part III: What Can be Done?". The New Yorker.
  5. ^ Cite error: The named reference RGS was invoked but never defined (see the help page).
  6. ^ a b Cite error: The named reference Hoffert was invoked but never defined (see the help page).
  7. ^ "Carbon Mitigation Initiative". Cmi.princeton.edu. 2014-01-08. Retrieved 2014-02-14.
  8. ^ a b Cite error: The named reference W2011 was invoked but never defined (see the help page).
  9. ^ Cite error: The named reference Romm was invoked but never defined (see the help page).
  10. ^ Johnson, Nathan; Gross, Robert; Staffell, Iain (1 June 2021). "Stabilisation wedges: measuring progress towards transforming the global energy and land use systems". Environmental Research Letters. 16 (6): 064011. doi:10.1088/1748-9326/abec06. hdl:10044/1/87398. ISSN 1748-9326. S2CID 233777592. Retrieved 26 June 2023.