Names | |
---|---|
IUPAC name
Cobalt(III) chloride
| |
Other names
Cobaltic chloride
Cobalt trichloride | |
Identifiers | |
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.030.509 |
EC Number |
|
PubChem CID
|
|
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
CoCl3 | |
Molar mass | 165.2913 g/mol (anhydrous) |
Melting point | Solid decomposes over −60°C |
Solubility | soluble in ethanol, diethyl ether |
Hazards | |
GHS labelling: | |
Danger | |
H300, H330 | |
P260, P264, P270, P271, P284, P301+P310, P304+P340, P310, P320, P321, P330, P403+P233, P405, P501 | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Cobalt(III) chloride or cobaltic chloride is an unstable and elusive compound of cobalt and chlorine with formula CoCl
3. In this compound, the cobalt atoms have a formal charge of +3.[1]
The compound has been reported to exist in the gas phase at high temperatures, in equilibrium with cobalt(II) chloride and chlorine gas.[2][3] It has also been found to be stable at very low temperatures, dispersed in a frozen argon matrix.[4]
Some articles from the 1920s and 1930s claim the synthesis of bulk amounts of this compound in pure form;[5][6] however, those results do not seem to have been reproduced, or have been attributed to other substances like the hexachlorocobaltate(III) anion CoCl3−
6.[1] Those earlier reports claim that it gives green solutions in anhydrous solvents such as ethanol and diethyl ether, and that it is stable only a very low temperatures (below −60 °C).[7]
schafer
was invoked but never defined (see the help page).schall32
was invoked but never defined (see the help page).