Cold fusion is a hypothesized type of nuclear reaction that would occur at, or near, room temperature. It would contrast starkly with the "hot" fusion that is known to take place naturally within stars and artificially in hydrogen bombs and prototype fusion reactors under immense pressure and at temperatures of millions of degrees, and be distinguished from muon-catalyzed fusion. There is currently no accepted theoretical model that would allow cold fusion to occur.
In 1989, two electrochemists at the University of Utah, Martin Fleischmann and Stanley Pons, reported that their apparatus had produced anomalous heat ("excess heat") of a magnitude they asserted would defy explanation except in terms of nuclear processes.[1] They further reported measuring small amounts of nuclear reaction byproducts, including neutrons and tritium.[2] The small tabletop experiment involved electrolysis of heavy water on the surface of a palladium (Pd) electrode.[3] The reported results received wide media attention[3] and raised hopes of a cheap and abundant source of energy.[4]
Many scientists tried to replicate the experiment with the few details available. Hopes faded with the large number of negative replications, the withdrawal of many reported positive replications, the discovery of flaws and sources of experimental error in the original experiment, and finally the discovery that Fleischmann and Pons had not actually detected nuclear reaction byproducts.[5] By late 1989, most scientists considered cold fusion claims dead,[6][7] and cold fusion subsequently gained a reputation as pathological science.[8][9] In 1989 the United States Department of Energy (DOE) concluded that the reported results of excess heat did not present convincing evidence of a useful source of energy and decided against allocating funding specifically for cold fusion. A second DOE review in 2004, which looked at new research, reached similar conclusions and did not result in DOE funding of cold fusion.[10] Presently, since articles about cold fusion are rarely published in peer-reviewed mainstream scientific journals, they do not attract the level of scrutiny expected for mainstream scientific publications.[11]
Nevertheless, some interest in cold fusion has continued through the decades—for example, a Google-funded failed replication attempt was published in a 2019 issue of Nature.[12][13] A small community of researchers continues to investigate it,[6][14][15] often under the alternative designations low-energy nuclear reactions (LENR) or condensed matter nuclear science (CMNS).[16][17][18][19]
Broad1989b
was invoked but never defined (see the help page).