In algebraic topology, a commutative ring spectrum, roughly equivalent to a -ring spectrum, is a commutative monoid in a good[1] category of spectra.
The category of commutative ring spectra over the field of rational numbers is Quillen equivalent to the category of differential graded algebras over .
Example: The Witten genus may be realized as a morphism of commutative ring spectra MString →tmf.
See also: simplicial commutative ring, highly structured ring spectrum and derived scheme.