In mathematics, a group G is said to be complete if every automorphism of G is inner, and it is centerless; that is, it has a trivial outer automorphism group and trivial center.
Equivalently, a group is complete if the conjugation map, G → Aut(G) (sending an element g to conjugation by g), is an isomorphism: injectivity implies that only conjugation by the identity element is the identity automorphism, meaning the group is centerless, while surjectivity implies it has no outer automorphisms.