This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
In cryptography, concrete security or exact security is a practice-oriented approach that aims to give more precise estimates of the computational complexities of adversarial tasks than polynomial equivalence would allow.[citation needed] It quantifies the security of a cryptosystem by bounding the probability of success for an adversary running for a fixed amount of time.[1][better source needed] Security proofs with precise analyses are referred to as concrete.[2][better source needed]
Traditionally, provable security is asymptotic: it classifies the hardness of computational problems using polynomial-time reducibility. Secure schemes are defined to be those in which the advantage of any computationally bounded adversary is negligible. While such a theoretical guarantee is important, in practice one needs to know exactly how efficient a reduction is because of the need to instantiate the security parameter - it is not enough to know that "sufficiently large" security parameters will do. An inefficient reduction results either in the success probability for the adversary or the resource requirement of the scheme being greater than desired.[citation needed]
Concrete security parametrizes all the resources available to the adversary, such as running time and memory, and other resources specific to the system in question, such as the number of plaintexts it can obtain or the number of queries it can make to any oracles available. Then the advantage of the adversary is upper bounded as a function of these resources and of the problem size. It is often possible to give a lower bound (i.e. an adversarial strategy) matching the upper bound, hence the name exact security.[citation needed]