A conformal loop ensemble (CLEκ) is a random collection of non-crossing loops in a simply connected, open subset of the plane. These random collections of loops are indexed by a parameter κ, which may be any real number between 8/3 and 8. CLEκ is a loop version of the Schramm–Loewner evolution: SLEκ is designed to model a single discrete random interface, while CLEκ models a full collection of interfaces.
In many instances for which there is a conjectured or proved relationship between a discrete model and SLEκ, there is also a conjectured or proved relationship with CLEκ. For example:
CLE3 is the limit of interfaces for the critical Ising model.