Congruent number

Triangle with the area 6, a congruent number.

In number theory, a congruent number is a positive integer that is the area of a right triangle with three rational number sides.[1][2] A more general definition includes all positive rational numbers with this property.[3]

The sequence of (integer) congruent numbers starts with

5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, 47, 52, 53, 54, 55, 56, 60, 61, 62, 63, 65, 69, 70, 71, 77, 78, 79, 80, 84, 85, 86, 87, 88, 92, 93, 94, 95, 96, 101, 102, 103, 109, 110, 111, 112, 116, 117, 118, 119, 120, ... (sequence A003273 in the OEIS)
Congruent number table: n ≤ 120
Congruent number table: n ≤ 120
—: non-Congruent number
C: square-free Congruent number
S: Congruent number with square factor
n 1 2 3 4 5 6 7 8
C C C
n 9 10 11 12 13 14 15 16
C C C
n 17 18 19 20 21 22 23 24
S C C C S
n 25 26 27 28 29 30 31 32
S C C C
n 33 34 35 36 37 38 39 40
C C C C
n 41 42 43 44 45 46 47 48
C S C C
n 49 50 51 52 53 54 55 56
S C S C S
n 57 58 59 60 61 62 63 64
S C C S
n 65 66 67 68 69 70 71 72
C C C C
n 73 74 75 76 77 78 79 80
C C C S
n 81 82 83 84 85 86 87 88
S C C C S
n 89 90 91 92 93 94 95 96
S C C C S
n 97 98 99 100 101 102 103 104
C C C
n 105 106 107 108 109 110 111 112
C C C S
n 113 114 115 116 117 118 119 120
S S C C S

For example, 5 is a congruent number because it is the area of a (20/3, 3/2, 41/6) triangle. Similarly, 6 is a congruent number because it is the area of a (3,4,5) triangle. 3 and 4 are not congruent numbers.

If q is a congruent number then s2q is also a congruent number for any natural number s (just by multiplying each side of the triangle by s), and vice versa. This leads to the observation that whether a nonzero rational number q is a congruent number depends only on its residue in the group

where is the set of nonzero rational numbers.

Every residue class in this group contains exactly one square-free integer, and it is common, therefore, only to consider square-free positive integers, when speaking about congruent numbers.

  1. ^ Weisstein, Eric W. "Congruent Number". MathWorld.
  2. ^ Guy, Richard K. (2004). Unsolved problems in number theory ([3rd ed.] ed.). New York: Springer. pp. 195–197. ISBN 0-387-20860-7. OCLC 54611248.
  3. ^ Koblitz, Neal (1993), Introduction to Elliptic Curves and Modular Forms, New York: Springer-Verlag, p. 3, ISBN 0-387-97966-2