Conical refraction is an optical phenomenon in which a ray of light, passing through a biaxial crystal along certain directions, is refracted into a hollow cone of light. There are two possible conical refractions, one internal and one external. For internal refraction, there are 4 directions, and for external refraction, there are 4 other directions.
For internal conical refraction, a planar wave of light enters an aperture a slab of biaxial crystal whose face is parallel to the plane of light. Inside the slab, the light splits into a hollow cone of light rays. Upon exiting the slab, the hollow cone turns into a hollow cylinder.
For external conical refraction, light is focused at a single point aperture on the slab of biaxial crystal, and exits the slab at the other side at an exit point aperture. Upon exiting, the light splits into a hollow cone.
This effect was predicted in 1832 by William Rowan Hamilton[1] and subsequently observed by Humphrey Lloyd in the next year.[2] It was possibly the first example of a phenomenon predicted by mathematical reasoning and later confirmed by experiment.[3]