Contour advection

Contour advection animation
Contour advection simulation

Contour advection is a Lagrangian method of simulating the evolution of one or more contours or isolines of a tracer as it is stirred by a moving fluid. Consider a blob of dye injected into a river or stream: to first order it could be modelled by tracking only the motion of its outlines. It is an excellent method for studying chaotic mixing: even when advected by smooth or finitely-resolved velocity fields, through a continuous process of stretching and folding, these contours often develop into intricate fractals. The tracer is typically passive as in [1] but may also be active as in,[2] representing a dynamical property of the fluid such as vorticity. At present, advection of contours is limited to two dimensions, but generalizations to three dimensions are possible.

  1. ^ D. W. Waugh; R. A. Plumb (1994). "Contour advection with surgery: a technique for investigating the fine scale structure in tracer transport". Journal of the Atmospheric Sciences. 51 (4): 415–422. doi:10.1175/1520-0469(1994)051<0530:CAWSAT>2.0.CO;2.
  2. ^ D. G. Dritschel (1988). "Contour surgery: A topological reconnection scheme". Journal of Computational Physics. 77: 240–266. doi:10.1016/0021-9991(88)90165-9.