Quantum logic gate
The classical analog of the CNOT gate is a reversible XOR gate .
How the CNOT gate can be used (with Hadamard gates ) in a computation.
In computer science , the controlled NOT gate (also C-NOT or CNOT ), controlled-X gate , controlled-bit-flip gate , Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer . It can be used to entangle and disentangle Bell states . Any quantum circuit can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates and single qubit rotations.[ 1] [ 2] The gate is sometimes named after Richard Feynman who developed an early notation for quantum gate diagrams in 1986.[ 3] [ 4] [ 5]
The CNOT can be expressed in the Pauli basis as:
CNOT
=
e
i
π
4
(
I
1
−
Z
1
)
(
I
2
−
X
2
)
=
e
−
i
π
4
(
I
1
−
Z
1
)
(
I
2
−
X
2
)
.
{\displaystyle {\mbox{CNOT}}=e^{i{\frac {\pi }{4}}(I_{1}-Z_{1})(I_{2}-X_{2})}=e^{-i{\frac {\pi }{4}}(I_{1}-Z_{1})(I_{2}-X_{2})}.}
Being both unitary and Hermitian , CNOT has the property
e
i
θ
U
=
(
cos
θ
)
I
+
(
i
sin
θ
)
U
{\displaystyle e^{i\theta U}=(\cos \theta )I+(i\sin \theta )U}
and
U
=
e
i
π
2
(
I
−
U
)
=
e
−
i
π
2
(
I
−
U
)
{\displaystyle U=e^{i{\frac {\pi }{2}}(I-U)}=e^{-i{\frac {\pi }{2}}(I-U)}}
, and is involutory .
The CNOT gate can be further decomposed as products of rotation operator gates and exactly one two qubit interaction gate , for example
CNOT
=
e
−
i
π
4
R
y
1
(
−
π
/
2
)
R
x
1
(
−
π
/
2
)
R
x
2
(
−
π
/
2
)
R
x
x
(
π
/
2
)
R
y
1
(
π
/
2
)
.
{\displaystyle {\mbox{CNOT}}=e^{-i{\frac {\pi }{4}}}R_{y_{1}}(-\pi /2)R_{x_{1}}(-\pi /2)R_{x_{2}}(-\pi /2)R_{xx}(\pi /2)R_{y_{1}}(\pi /2).}
In general, any single qubit unitary gate can be expressed as
U
=
e
i
H
{\displaystyle U=e^{iH}}
, where H is a Hermitian matrix , and then the controlled U is
C
U
=
e
i
1
2
(
I
1
−
Z
1
)
H
2
{\displaystyle CU=e^{i{\frac {1}{2}}(I_{1}-Z_{1})H_{2}}}
.
The CNOT gate is also used in classical reversible computing .
^ Barenco, Adriano; Bennett, Charles H.; Cleve, Richard; DiVincenzo, David P.; Margolus, Norman; Shor, Peter; Sleator, Tycho; Smolin, John A.; Weinfurter, Harald (1995-11-01). "Elementary gates for quantum computation". Physical Review A . 52 (5). American Physical Society (APS): 3457–3467. arXiv :quant-ph/9503016 . Bibcode :1995PhRvA..52.3457B . doi :10.1103/physreva.52.3457 . ISSN 1050-2947 . PMID 9912645 . S2CID 8764584 .
^ Nielsen, Michael A. ; Chuang, Isaac (2000). Quantum Computation and Quantum Information . Cambridge: Cambridge University Press. ISBN 0521632358 . OCLC 43641333 .
^ Feynman, Richard P. (1986). "Quantum mechanical computers" . Foundations of Physics . 16 (6): 507–531. Bibcode :1986FoPh...16..507F . doi :10.1007/BF01886518 . ISSN 0015-9018 . S2CID 121736387 .
^ Samrin, S. Saniya; Patil, Rachamma; Itagi, Sumangala; Chetti, Smita C; Tasneem, Afiya (2022-06-01). "Design of logic gates using reversible gates with reduced quantum cost" . Global Transitions Proceedings . International Conference on Intelligent Engineering Approach(ICIEA-2022). 3 (1): 136–141. Bibcode :2022GloTP...3..136S . doi :10.1016/j.gltp.2022.04.011 . ISSN 2666-285X .
^ Thapliyal, Himanshu; Ranganathan, Nagarajan (2009). "Design of Efficient Reversible Binary Subtractors Based on a New Reversible Gate" . 2009 IEEE Computer Society Annual Symposium on VLSI . pp. 229–234. doi :10.1109/ISVLSI.2009.49 . ISBN 978-1-4244-4408-3 . S2CID 16182781 .