Controlled NOT gate

The classical analog of the CNOT gate is a reversible XOR gate.
How the CNOT gate can be used (with Hadamard gates) in a computation.

In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer. It can be used to entangle and disentangle Bell states. Any quantum circuit can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates and single qubit rotations.[1][2] The gate is sometimes named after Richard Feynman who developed an early notation for quantum gate diagrams in 1986.[3][4][5]

The CNOT can be expressed in the Pauli basis as:

Being both unitary and Hermitian, CNOT has the property and , and is involutory.

The CNOT gate can be further decomposed as products of rotation operator gates and exactly one two qubit interaction gate, for example

In general, any single qubit unitary gate can be expressed as , where H is a Hermitian matrix, and then the controlled U is .

The CNOT gate is also used in classical reversible computing.

  1. ^ Barenco, Adriano; Bennett, Charles H.; Cleve, Richard; DiVincenzo, David P.; Margolus, Norman; Shor, Peter; Sleator, Tycho; Smolin, John A.; Weinfurter, Harald (1995-11-01). "Elementary gates for quantum computation". Physical Review A. 52 (5). American Physical Society (APS): 3457–3467. arXiv:quant-ph/9503016. Bibcode:1995PhRvA..52.3457B. doi:10.1103/physreva.52.3457. ISSN 1050-2947. PMID 9912645. S2CID 8764584.
  2. ^ Nielsen, Michael A.; Chuang, Isaac (2000). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press. ISBN 0521632358. OCLC 43641333.
  3. ^ Feynman, Richard P. (1986). "Quantum mechanical computers". Foundations of Physics. 16 (6): 507–531. Bibcode:1986FoPh...16..507F. doi:10.1007/BF01886518. ISSN 0015-9018. S2CID 121736387.
  4. ^ Samrin, S. Saniya; Patil, Rachamma; Itagi, Sumangala; Chetti, Smita C; Tasneem, Afiya (2022-06-01). "Design of logic gates using reversible gates with reduced quantum cost". Global Transitions Proceedings. International Conference on Intelligent Engineering Approach(ICIEA-2022). 3 (1): 136–141. Bibcode:2022GloTP...3..136S. doi:10.1016/j.gltp.2022.04.011. ISSN 2666-285X.
  5. ^ Thapliyal, Himanshu; Ranganathan, Nagarajan (2009). "Design of Efficient Reversible Binary Subtractors Based on a New Reversible Gate". 2009 IEEE Computer Society Annual Symposium on VLSI. pp. 229–234. doi:10.1109/ISVLSI.2009.49. ISBN 978-1-4244-4408-3. S2CID 16182781.