Cre recombinase | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Organism | |||||||
Symbol | cre | ||||||
Entrez | 2777477 | ||||||
RefSeq (Prot) | YP_006472.1 | ||||||
UniProt | P06956 | ||||||
Other data | |||||||
EC number | 2.7.7.- | ||||||
Chromosome | genome: 0 - 0 Mb | ||||||
|
Cre recombinase is a tyrosine recombinase enzyme derived from the P1 bacteriophage. The enzyme uses a topoisomerase I-like mechanism to carry out site specific recombination events. The enzyme (38 kDa) is a member of the integrase family of site specific recombinase and it is known to catalyse the site specific recombination event between two DNA recognition sites (LoxP sites). This 34 base pair (bp) loxP recognition site consists of two 13 bp palindromic sequences which flank an 8bp spacer region. The products of Cre-mediated recombination at loxP sites are dependent upon the location and relative orientation of the loxP sites. Two separate DNA species both containing loxP sites can undergo fusion as the result of Cre mediated recombination. DNA sequences found between two loxP sites are said to be "floxed". In this case the products of Cre mediated recombination depends upon the orientation of the loxP sites. DNA found between two loxP sites oriented in the same direction will be excised as a circular loop of DNA whilst intervening DNA between two loxP sites that are opposingly orientated will be inverted.[1] The enzyme requires no additional cofactors (such as ATP) or accessory proteins for its function.[2]
The enzyme plays important roles in the life cycle of the P1 bacteriophage, such as cyclization of the linear genome and resolution of dimeric chromosomes that form after DNA replication.[3]
Cre recombinase is a widely used tool in the field of molecular biology. The enzyme's unique and specific recombination system is exploited to manipulate genes and chromosomes in a huge range of research, such as gene knock out or knock in studies. The enzyme's ability to operate efficiently in a wide range of cellular environments (including mammals, plants, bacteria, and yeast) enables the Cre-Lox recombination system to be used in a vast number of organisms, making it a particularly useful tool in scientific research.[4]