Critical exponents describe the behavior of physical quantities near continuous phase transitions. It is believed, though not proven, that they are universal, i.e. they do not depend on the details of the physical system, but only on some of its general features. For instance, for ferromagnetic systems at thermal equilibrium, the critical exponents depend only on:
These properties of critical exponents are supported by experimental data. Analytical results can be theoretically achieved in mean field theory in high dimensions or when exact solutions are known such as the two-dimensional Ising model. The theoretical treatment in generic dimensions requires the renormalization group approach or, for systems at thermal equilibrium, the conformal bootstrap techniques. Phase transitions and critical exponents appear in many physical systems such as water at the critical point, in magnetic systems, in superconductivity, in percolation and in turbulent fluids. The critical dimension above which mean field exponents are valid varies with the systems and can even be infinite.