Cruciform DNA is a form of non-B DNA, or an alternative DNA structure. The formation of cruciform DNA requires the presence of palindromes called inverted repeat sequences.[1] These inverted repeats contain a sequence of DNA in one strand that is repeated in the opposite direction on the other strand. As a result, inverted repeats are self-complementary and can give rise to structures such as hairpins and cruciforms. Cruciform DNA structures require at least a six nucleotide sequence of inverted repeats to form a structure consisting of a stem, branch point and loop in the shape of a cruciform, stabilized by negative DNA supercoiling.[1][2]
Two classes of cruciform DNA have been described: folded and unfolded. Folded cruciform structures are characterized by the formation of acute angles between adjacent arms and main strand DNA. Unfolded cruciform structures have square planar geometry and 4-fold symmetry in which the two arms of the cruciform are perpendicular to each other.[2] Two mechanisms for the formation of cruciform DNA have been described: C-type and S-type.[3] The formation of cruciform structures in linear DNA is thermodynamically unfavorable due to the possibility of base unstacking at junction points and open regions at loops.[2]
Cruciform DNA is found in both prokaryotes and eukaryotes and has a role in DNA transcription and DNA replication, double strand repair, DNA translocation and recombination. They also serve a function in epigenetic regulation along with biological implications such as DNA supercoiling, double strand breaks, and targets for cruciform-binding proteins.[4][5][6] Cruciform structures can increase genomic instability and are involved in the formation of various diseases, such as cancer and Werner's Disease.[7][8][9]
^Stros M, Muselíková-Polanská E, Pospísilová S, Strauss F (June 2004). "High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops". Biochemistry. 43 (22): 7215–25. doi:10.1021/bi049928k. PMID15170359.