Crystal plasticity

Crystal plasticity is a mesoscale computational technique that takes into account crystallographic anisotropy in modelling the mechanical behaviour of polycrystalline materials. The technique has typically been used to study deformation through the process of slip, however, there are some flavors of crystal plasticity that can incorporate other deformation mechanisms like twinning and phase transformations.[1] Crystal plasticity is used to obtain the relationship between stress and strain that also captures the underlying physics at the crystal level. Hence, it can be used to predict not just the stress-strain response of a material, but also the texture evolution, micromechanical field distributions, and regions of strain localisation.[2] The two widely used formulations of crystal plasticity are the one based on the finite element method known as Crystal Plasticity Finite Element Method (CPFEM),[3] which is developed based on the finite strain formulation for the mechanics, and a spectral formulation which is more computationally efficient due to the fast Fourier transform, but is based on the small strain formulation for the mechanics.[4][5]

  1. ^ Courtney, Thomas H. (2000). Mechanical behavior of materials (2nd ed.). Boston: McGraw Hill. ISBN 978-1577664253.
  2. ^ Pokharel, Reeju; Lind, Jonathan; Kanjarla, Anand K.; Lebensohn, Ricardo A.; Li, Shiu Fai; Kenesei, Peter; Suter, Robert M.; Rollett, Anthony D. (March 2014). "Polycrystal Plasticity: Comparison Between Grain - Scale Observations of Deformation and Simulations". Annual Review of Condensed Matter Physics. 5 (1): 317–346. Bibcode:2014ARCMP...5..317P. doi:10.1146/annurev-conmatphys-031113-133846. OSTI 1763197.
  3. ^ Roters, F.; Eisenlohr, P.; Hantcherli, L.; Tjahjanto, D.D.; Bieler, T.R.; Raabe, D. (February 2010). "Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications". Acta Materialia. 58 (4): 1152–1211. Bibcode:2010AcMat..58.1152R. doi:10.1016/j.actamat.2009.10.058.
  4. ^ Moulinec, H.; Suquet, P. (April 1998). "A numerical method for computing the overall response of nonlinear composites with complex microstructure". Computer Methods in Applied Mechanics and Engineering. 157 (1–2): 69–94. arXiv:2012.08962. Bibcode:1998CMAME.157...69M. doi:10.1016/S0045-7825(97)00218-1. S2CID 120640232.
  5. ^ Lebensohn, Ricardo A.; Rollett, Anthony D. (February 2020). "Spectral methods for full-field micromechanical modelling of polycrystalline materials". Computational Materials Science. 173: 109336. doi:10.1016/j.commatsci.2019.109336.