| |||
Names | |||
---|---|---|---|
Preferred IUPAC name
Cubane[1] | |||
Systematic IUPAC name
Pentacyclo[4.2.0.02,5.03,8.04,7]octane | |||
Identifiers | |||
3D model (JSmol)
|
|||
ChEBI | |||
ChemSpider | |||
PubChem CID
|
|||
UNII | |||
CompTox Dashboard (EPA)
|
|||
| |||
| |||
Properties | |||
C8H8 | |||
Molar mass | 104.15 g/mol | ||
Appearance | Transparent[2] crystalline solid | ||
Density | 1.29 g/cm3 | ||
Melting point | 133.5 °C (272.3 °F; 406.6 K)[3] | ||
Boiling point | 161.6 °C (322.9 °F; 434.8 K)[3] | ||
Related compounds | |||
Related hydrocarbons
|
Cuneane Dodecahedrane Tetrahedrane Prismane Prismane C8 | ||
Related compounds
|
Octafluorocubane Octanitrocubane Octaazacubane Octasilacubane | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Cubane is a synthetic hydrocarbon compound with the formula C8H8. It consists of eight carbon atoms arranged at the corners of a cube, with one hydrogen atom attached to each carbon atom. A solid crystalline substance, cubane is one of the Platonic hydrocarbons and a member of the prismanes. It was first synthesized in 1964 by Philip Eaton and Thomas Cole.[4] Before this work, Eaton believed that cubane would be impossible to synthesize due to the "required 90 degree bond angles".[5][6] The cubic shape requires the carbon atoms to adopt an unusually sharp 90° bonding angle, which would be highly strained as compared to the 109.45° angle of a tetrahedral carbon. Once formed, cubane is quite kinetically stable, due to a lack of readily available decomposition paths. It is the simplest hydrocarbon with octahedral symmetry.
Having high potential energy and kinetic stability makes cubane and its derivative compounds useful for controlled energy storage. For example, octanitrocubane and heptanitrocubane have been studied as high-performance explosives. These compounds also typically have a very high density for hydrocarbon molecules. The resulting high energy density means a large amount of energy can be stored in a comparably smaller amount of space, an important consideration for applications in fuel storage and energy transport. Furthermore, their geometry and stability make them suitable isosteres for benzene rings.[7]
The retained names adamantane and cubane are used in general nomenclature and as preferred IUPAC names.
Biegasiewicz
was invoked but never defined (see the help page).eaton-1964
was invoked but never defined (see the help page).